本文整理匯總了Python中numpy.rint方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.rint方法的具體用法?Python numpy.rint怎麽用?Python numpy.rint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.rint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def add_image(self, img):
if self.print_progress and self.cur_images % self.progress_interval == 0:
print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True)
sys.stdout.flush()
if self.shape is None:
self.shape = img.shape
self.resolution_log2 = int(np.log2(self.shape[1]))
assert self.shape[0] in [1, 3]
assert self.shape[1] == self.shape[2]
assert self.shape[1] == 2**self.resolution_log2
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
for lod in range(self.resolution_log2 - 1):
tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod)
self.tfr_writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt))
assert img.shape == self.shape
for lod, tfr_writer in enumerate(self.tfr_writers):
if lod:
img = img.astype(np.float32)
img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25
quant = np.rint(img).clip(0, 255).astype(np.uint8)
ex = tf.train.Example(features=tf.train.Features(feature={
'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)),
'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))}))
tfr_writer.write(ex.SerializeToString())
self.cur_images += 1
示例2: visualize_2D_trip
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
colors = ['red'] # Depot is first city
for i in range(len(tw_open)-1):
colors.append('blue')
plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with TW
tw_open = np.rint(tw_open)
tw_close = np.rint(tw_close)
time_window = np.concatenate((tw_open,tw_close),axis=1)
for tw, (x, y) in zip(time_window,(zip(X,Y))):
plt.annotate(tw,xy=(x, y))
plt.xlim(0,60)
plt.ylim(0,60)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例3: apply_float_operation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def apply_float_operation(problem, fun):
# save the original bounds of the problem
_xl, _xu = problem.xl, problem.xu
# copy the arrays of the problem and cast them to float
xl, xu = problem.xl.astype(np.float), problem.xu.astype(np.float)
# modify the bounds to match the new crossover specifications and set the problem
problem.xl = xl - (0.5 - 1e-16)
problem.xu = xu + (0.5 - 1e-16)
# perform the crossover
off = fun()
# now round to nearest integer for all offsprings
off = np.rint(off).astype(np.int)
# reset the original bounds of the problem and design space values
problem.xl = _xl
problem.xu = _xu
return off
示例4: get_kconserv
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def get_kconserv(cell, kpts):
r'''Get the momentum conservation array for a set of k-points.
Given k-point indices (k, l, m) the array kconserv[k,l,m] returns
the index n that satifies momentum conservation,
(k(k) - k(l) + k(m) - k(n)) \dot a = 2n\pi
This is used for symmetry e.g. integrals of the form
[\phi*[k](1) \phi[l](1) | \phi*[m](2) \phi[n](2)]
are zero unless n satisfies the above.
'''
nkpts = kpts.shape[0]
a = cell.lattice_vectors() / (2*np.pi)
kconserv = np.zeros((nkpts,nkpts,nkpts), dtype=int)
kvKLM = kpts[:,None,None,:] - kpts[:,None,:] + kpts
for N, kvN in enumerate(kpts):
kvKLMN = np.einsum('wx,klmx->wklm', a, kvKLM - kvN)
# check whether (1/(2pi) k_{KLMN} dot a) is an integer
kvKLMN_int = np.rint(kvKLMN)
mask = np.einsum('wklm->klm', abs(kvKLMN - kvKLMN_int)) < 1e-9
kconserv[mask] = N
return kconserv
示例5: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def __init__(self, **kw):
"""
Constructor of affine, equidistant 3d mesh class
ucell : unit cell vectors (in coordinate space)
Ecut : Energy cutoff to parametrize the discretization
"""
from scipy.fftpack import next_fast_len
self.ucell = kw['ucell'] if 'ucell' in kw else 30.0*np.eye(3) # Not even unit cells vectors are required by default
self.Ecut = Ecut = kw['Ecut'] if 'Ecut' in kw else 50.0 # 50.0 Hartree by default
luc = np.sqrt(np.einsum('ix,ix->i', self.ucell, self.ucell))
self.shape = nn = np.array([next_fast_len( int(np.rint(l * np.sqrt(Ecut)/2))) for l in luc], dtype=int)
self.size = np.prod(self.shape)
gc = self.ucell/(nn) # This is probable the best for finite systems, for PBC use nn, not (nn-1)
self.dv = np.abs(np.dot(gc[0], np.cross(gc[1], gc[2] )))
rr = [np.array([gc[i]*j for j in range(nn[i])]) for i in range(3)]
self.rr = rr
self.origin = kw['origin'] if 'origin' in kw else np.zeros(3)
示例6: _hrv_get_rri
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def _hrv_get_rri(peaks=None, sampling_rate=1000, interpolate=False, **kwargs):
rri = np.diff(peaks) / sampling_rate * 1000
if interpolate is False:
return rri
else:
# Minimum sampling rate for interpolation
if sampling_rate < 10:
sampling_rate = 10
# Compute length of interpolated heart period signal at requested sampling rate.
desired_length = int(np.rint(peaks[-1] / sampling_rate * sampling_rate))
rri = signal_interpolate(
peaks[1:], # Skip first peak since it has no corresponding element in heart_period
rri,
x_new=np.arange(desired_length),
**kwargs
)
return rri, sampling_rate
示例7: read_segments_as_bool_vec
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def read_segments_as_bool_vec(segments_file):
""" [ bool_vec ] = read_segments_as_bool_vec(segments_file)
using kaldi 'segments' file for 1 wav, format : '<utt> <rec> <t-beg> <t-end>'
- t-beg, t-end is in seconds,
- assumed 100 frames/second,
"""
segs = np.loadtxt(segments_file, dtype='object,object,f,f', ndmin=1)
# Sanity checks,
assert(len(segs) > 0) # empty segmentation is an error,
assert(len(np.unique([rec[1] for rec in segs ])) == 1) # segments with only 1 wav-file,
# Convert time to frame-indexes,
start = np.rint([100 * rec[2] for rec in segs]).astype(int)
end = np.rint([100 * rec[3] for rec in segs]).astype(int)
# Taken from 'read_lab_to_bool_vec', htk.py,
frms = np.repeat(np.r_[np.tile([False,True], len(end)), False],
np.r_[np.c_[start - np.r_[0, end[:-1]], end-start].flat, 0])
assert np.sum(end-start) == np.sum(frms)
return frms
示例8: get_C_hat_transpose
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def get_C_hat_transpose():
probs = []
net.eval()
for batch_idx, (data, target) in enumerate(train_gold_deterministic_loader):
# we subtract 10 because we added 10 to gold so we could identify which example is gold in train_phase2
data, target = torch.autograd.Variable(data.cuda(), volatile=True),\
torch.autograd.Variable((target - num_classes).cuda(), volatile=True)
# forward
output = net(data)
pred = F.softmax(output)
probs.extend(list(pred.data.cpu().numpy()))
probs = np.array(probs, dtype=np.float32)
preds = np.argmax(probs, axis=1)
C_hat = np.zeros([num_classes, num_classes])
for i in range(len(train_data_gold.train_labels)):
C_hat[int(np.rint(train_data_gold.train_labels[i] - num_classes)), preds[i]] += 1
C_hat /= (np.sum(C_hat, axis=1, keepdims=True) + 1e-7)
C_hat = C_hat * 0.99 + np.full_like(C_hat, 1/num_classes) * 0.01 # smoothing
return C_hat.T.astype(np.float32)
示例9: extract_segments
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def extract_segments(wavs, segments=None):
""" This function returns generator of segmented audio as
(utterance id, numpy.float32 array)
TODO?: sampling rate is not converted.
"""
if segments is not None:
# segments should be sorted by rec-id
for seg in segments:
wav = wavs[seg['rec']]
data, samplerate = load_wav(wav)
st_sample = np.rint(seg['st'] * samplerate).astype(int)
et_sample = np.rint(seg['et'] * samplerate).astype(int)
yield seg['utt'], data[st_sample:et_sample]
else:
# segments file not found,
# wav.scp is used as segmented audio list
for rec in wavs:
data, samplerate = load_wav(wavs[rec])
yield rec, data
示例10: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def __init__(self, matrix_size, input_size, low=0, high=1, round_values=False):
"""Init function.
@param matrix_size It defines the matrix size
@param input_size it defines the vector input size.
@param low boundary for the random initialization
@param high boundary for the random initialization
@param round_values it is possible to initialize the
weights to the closest integer value.
"""
self._matrix_size = matrix_size
self._input_size = input_size
self._weights_matrix = np.random.uniform(low=low, high=high, size=(matrix_size, matrix_size, input_size))
if (round_values == True):
self._weights_matrix = np.rint(self._weights_matrix)
示例11: setUp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def setUp(self):
M = 4
N = 10000
seed= 0
sampling_frequency = 30000
X = np.random.RandomState(seed=seed).normal(0, 1, (M, N))
geom = np.random.RandomState(seed=seed).normal(0, 1, (M, 2))
self._X = X
self._geom = geom
self._sampling_frequency = sampling_frequency
self.RX = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency, geom=geom)
self.SX = se.NumpySortingExtractor()
L = 200
self._train1 = np.rint(np.random.RandomState(seed=seed).uniform(0, N, L)).astype(int)
self.SX.add_unit(unit_id=1, times=self._train1)
self.SX.add_unit(unit_id=2, times=np.random.RandomState(seed=seed).uniform(0, N, L))
self.SX.add_unit(unit_id=3, times=np.random.RandomState(seed=seed).uniform(0, N, L))
示例12: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def __init__(self, file_path: PathType):
super().__init__(file_path)
cluster_classes = self._getfield("cluster_class")
classes = cluster_classes[:, 0]
spike_times = cluster_classes[:, 1]
par = self._getfield("par")
sample_rate = par[0, 0][np.where(np.array(par.dtype.names) == 'sr')[0][0]][0][0]
self.set_sampling_frequency(sample_rate)
self._unit_ids = np.unique(classes[classes > 0]).astype('int')
self._spike_trains = {}
for uid in self._unit_ids:
mask = (classes == uid)
self._spike_trains[uid] = np.rint(spike_times[mask]*(sample_rate/1000))
self._unsorted_train = np.rint(spike_times[classes == 0] * (sample_rate / 1000))
示例13: optimize_model
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def optimize_model(task, param_name, test_size: float, binary=False) -> None:
x, y = task.create_train_data()
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=test_size)
param = redshells.factory.get_optuna_param(param_name, trial)
model = task.create_model()
model.set_params(**param)
model.fit(train_x, train_y)
predictions = model.predict(test_x)
if binary:
predictions = np.rint(predictions)
return 1.0 - sklearn.metrics.accuracy_score(test_y, predictions)
study = optuna.create_study()
study.optimize(objective, n_trials=100)
task.dump(dict(best_params=study.best_params, best_value=study.best_value))
示例14: get_k_mesh_by_cell
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def get_k_mesh_by_cell(self, kpoints_per_reciprocal_angstrom, cell=None):
"""
get k-mesh density according to the box size.
Args:
kpoints_per_reciprocal_angstrom: (float) number of k-points per reciprocal angstrom (i.e. per 2*pi*box_length)
cell: (list/ndarray) 3x3 cell. If not set, the current cell is used.
"""
if cell is None:
if self.structure is None:
raise AssertionError('structure not set')
cell = self.structure.cell
latlens = np.linalg.norm(cell, axis=-1)
kmesh = np.rint( 2 * np.pi / latlens * kpoints_per_reciprocal_angstrom)
if kmesh.min() <= 0:
raise AssertionError("kpoint per angstrom too low")
return [int(k) for k in kmesh]
示例15: BGR2YCbCr
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rint [as 別名]
def BGR2YCbCr(im):
mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112]])
mat = mat.T
offset = np.array([[[16, 128, 128]]])
if im.dtype == 'uint8':
mat = mat/255
out = np.dot(im,mat) + offset
out = np.clip(out, 0, 255)
out = np.rint(out).astype('uint8')
elif im.dtype == 'float':
mat = mat/255
offset = offset/255
out = np.dot(im, mat) + offset
out = np.clip(out, 0, 1)
else:
assert False
return out