當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.resize方法代碼示例

本文整理匯總了Python中numpy.resize方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.resize方法的具體用法?Python numpy.resize怎麽用?Python numpy.resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: PreprocessContentImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def PreprocessContentImage(path, long_edge):
    img = io.imread(path)
    logging.info("load the content image, size = %s", img.shape[:2])
    factor = float(long_edge) / max(img.shape[:2])
    new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
    resized_img = transform.resize(img, new_size)
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    logging.info("resize the content image to %s", new_size)
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2])) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:nstyle.py

示例2: test_PLinearDropInputs_ShouldDropRightParams

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def test_PLinearDropInputs_ShouldDropRightParams(self):
        dropped_index = 0

        # assume input is 2x2x2, 2 layers of 2x2
        input_shape = (2, 2, 2)
        module = pnn.PLinear(8, 10)

        old_num_features = module.in_features
        old_weight = module.weight.data.cpu().numpy()
        resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape))

        module.drop_inputs(input_shape, dropped_index)
        new_shape = module.weight.size()

        # ensure that the chosen index is dropped
        expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape)
        output = module.weight.data.cpu().numpy()
        self.assertTrue(np.array_equal(output, expected_weight))

        # ensure num features is reduced
        self.assertTrue(module.in_features, old_num_features-1) 
開發者ID:alexfjw,項目名稱:prunnable-layers-pytorch,代碼行數:23,代碼來源:prunable_nn_test.py

示例3: load_flo

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def load_flo(file_path):
    """
    Read .flo file in MiddleBury format
    Code adapted from:
    http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    WARNING: this will work on little-endian architectures (eg Intel x86) only!
    Args:
        file_path string: file path(absolute)
    Returns:
        flow (numpy.array): data of image in (Height, Width, 2) layout
    """

    with open(file_path, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        assert(magic == 202021.25)
        w = int(np.fromfile(f, np.int32, count=1))
        h = int(np.fromfile(f, np.int32, count=1))
        # print('Reading %d x %d flo file\n' % (w, h))
        flow = np.fromfile(f, np.float32, count=2 * w * h)
        # Reshape data into 3D array (columns, rows, bands)
        # The reshape here is for visualization, the original code is (w,h,2)
        flow = np.resize(flow, (h, w, 2))

    return flow 
開發者ID:DeepMotionAIResearch,項目名稱:DenseMatchingBenchmark,代碼行數:27,代碼來源:load_flow.py

示例4: read_flo_file

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def read_flo_file(filename,verbose=False):
    """
    Read from .flo optical flow file (Middlebury format)
    :param flow_file: name of the flow file
    :return: optical flow data in matrix
    
    adapted from https://github.com/liruoteng/OpticalFlowToolkit/
    
    """
    f = open(filename, 'rb')
    magic = np.fromfile(f, np.float32, count=1)
    data2d = None

    if 202021.25 != magic:
        raise TypeError('Magic number incorrect. Invalid .flo file')
    else:
        w = np.fromfile(f, np.int32, count=1)
        h = np.fromfile(f, np.int32, count=1)
        if verbose:
            print("Reading %d x %d flow file in .flo format" % (h, w))
        data2d = np.fromfile(f, np.float32, count=int(2 * w * h))
        # reshape data into 3D array (columns, rows, channels)
        data2d = np.resize(data2d, (h[0], w[0], 2))
    f.close()
    return data2d 
開發者ID:ignacio-rocco,項目名稱:weakalign,代碼行數:27,代碼來源:flow.py

示例5: test_broadcast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def test_broadcast(size, mask, item, box):
    selection = np.resize(mask, size)

    data = np.arange(size, dtype=float)

    # Construct the expected series by taking the source
    # data or item based on the selection
    expected = Series([item if use_item else data[
        i] for i, use_item in enumerate(selection)])

    s = Series(data)
    s[selection] = box(item)
    assert_series_equal(s, expected)

    s = Series(data)
    result = s.where(~selection, box(item))
    assert_series_equal(result, expected)

    s = Series(data)
    result = s.mask(selection, box(item))
    assert_series_equal(result, expected) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:test_boolean.py

示例6: read_flo_file

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def read_flo_file(filename, memcached=False):
    """
    Read from Middlebury .flo file
    :param flow_file: name of the flow file
    :return: optical flow data in matrix
    """
    if memcached:
        filename = io.BytesIO(filename)
    f = open(filename, 'rb')
    magic = np.fromfile(f, np.float32, count=1)[0]
    data2d = None

    if 202021.25 != magic:
        print('Magic number incorrect. Invalid .flo file')
    else:
        w = np.fromfile(f, np.int32, count=1)[0]
        h = np.fromfile(f, np.int32, count=1)[0]
        data2d = np.fromfile(f, np.float32, count=2 * w * h)
        # reshape data into 3D array (columns, rows, channels)
        data2d = np.resize(data2d, (h, w, 2))
    f.close()
    return data2d


# fast resample layer 
開發者ID:XiaohangZhan,項目名稱:conditional-motion-propagation,代碼行數:27,代碼來源:flowlib.py

示例7: test_check_preserve_type

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def test_check_preserve_type():
    # Ensures that type float32 is preserved.
    XA = np.resize(np.arange(40), (5, 8)).astype(np.float32)
    XB = np.resize(np.arange(40), (5, 8)).astype(np.float32)

    XA_checked, XB_checked = check_pairwise_arrays(XA, None)
    assert_equal(XA_checked.dtype, np.float32)

    # both float32
    XA_checked, XB_checked = check_pairwise_arrays(XA, XB)
    assert_equal(XA_checked.dtype, np.float32)
    assert_equal(XB_checked.dtype, np.float32)

    # mismatched A
    XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float),
                                                   XB)
    assert_equal(XA_checked.dtype, np.float)
    assert_equal(XB_checked.dtype, np.float)

    # mismatched B
    XA_checked, XB_checked = check_pairwise_arrays(XA,
                                                   XB.astype(np.float))
    assert_equal(XA_checked.dtype, np.float)
    assert_equal(XB_checked.dtype, np.float) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_pairwise.py

示例8: readFlow

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def readFlow(fn):
    """ Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    # print 'fn = %s'%(fn)
    with open(fn, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print('Magic number incorrect. Invalid .flo file')
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            # print 'Reading %d x %d flo file\n' % (w, h)
            data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
            # Reshape data into 3D array (columns, rows, bands)
            # The reshape here is for visualization, the original code is (w,h,2)
            return np.resize(data, (int(h), int(w), 2)) 
開發者ID:orsic,項目名稱:swiftnet,代碼行數:22,代碼來源:flow_utils.py

示例9: img_pre_process

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def img_pre_process(img):
    """
    Processes the image and returns it
    :param img: The image to be processed
    :return: Returns the processed image
    """
    ## Chop off 1/3 from the top and cut bottom 150px(which contains the head of car)
    shape = img.shape
    img = img[int(shape[0]/3):shape[0]-150, 0:shape[1]]
    ## Resize the image
    img = cv2.resize(img, (params.FLAGS.img_w, params.FLAGS.img_h), interpolation=cv2.INTER_AREA)
    ## Return the image sized as a 4D array
    return np.resize(img, (params.FLAGS.img_w, params.FLAGS.img_h, params.FLAGS.img_c))


## Process video 
開發者ID:omnigeeker,項目名稱:mlnd_DeepTesla,代碼行數:18,代碼來源:run.py

示例10: mesh_from_img

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def mesh_from_img(img):
    nv = (img.shape[0] + 1) * (img.shape[1] + 1)
    nf = img.size * 2

    v_count = 0
    f_count = 0
    V_dict = {}

    V = np.zeros([nv, 2])
    F = np.zeros([nf, 3], dtype=np.int)

    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            val = img[i, j]
            if val == 255.0:
                continue

            v_idx = []
            for v_i in [(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)]:
                if v_i in V_dict:
                    v_idx.append(V_dict[v_i])
                else:
                    V_dict[v_i] = v_count
                    V[v_count, :] = np.array((v_i[1], -v_i[0]))
                    v_count += 1
                    v_idx.append(v_count - 1)

            v1, v2, v3, v4 = v_idx

            F[f_count, :] = np.array([v1, v2, v4])
            F[f_count + 1, :] = np.array([v1, v4, v3])
            f_count += 2

    V = np.resize(V, [v_count, 2])
    F = np.resize(F, [f_count, 3])

    return V, F 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:39,代碼來源:triangulate.py

示例11: get_args

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def get_args(arglist=None):
    parser = argparse.ArgumentParser(description='neural style')

    parser.add_argument('--model', type=str, default='vgg19',
                        choices = ['vgg'],
                        help = 'the pretrained model to use')
    parser.add_argument('--content-image', type=str, default='input/IMG_4343.jpg',
                        help='the content image')
    parser.add_argument('--style-image', type=str, default='input/starry_night.jpg',
                        help='the style image')
    parser.add_argument('--stop-eps', type=float, default=.005,
                        help='stop if the relative chanage is less than eps')
    parser.add_argument('--content-weight', type=float, default=10,
                        help='the weight for the content image')
    parser.add_argument('--style-weight', type=float, default=1,
                        help='the weight for the style image')
    parser.add_argument('--tv-weight', type=float, default=1e-2,
                        help='the magtitute on TV loss')
    parser.add_argument('--max-num-epochs', type=int, default=1000,
                        help='the maximal number of training epochs')
    parser.add_argument('--max-long-edge', type=int, default=600,
                        help='resize the content image')
    parser.add_argument('--lr', type=float, default=.001,
                        help='the initial learning rate')
    parser.add_argument('--gpu', type=int, default=0,
                        help='which gpu card to use, -1 means using cpu')
    parser.add_argument('--output_dir', type=str, default='output/',
                        help='the output image')
    parser.add_argument('--save-epochs', type=int, default=50,
                        help='save the output every n epochs')
    parser.add_argument('--remove-noise', type=float, default=.02,
                        help='the magtitute to remove noise')
    parser.add_argument('--lr-sched-delay', type=int, default=75,
                        help='how many epochs between decreasing learning rate')
    parser.add_argument('--lr-sched-factor', type=int, default=0.9,
                        help='factor to decrease learning rate on schedule')

    if arglist is None:
        return parser.parse_args()
    else:
        return parser.parse_args(arglist) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:43,代碼來源:nstyle.py

示例12: PreprocessStyleImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def PreprocessStyleImage(path, shape):
    img = io.imread(path)
    resized_img = transform.resize(img, (shape[2], shape[3]))
    sample = np.asarray(resized_img) * 256
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)

    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2])) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:13,代碼來源:nstyle.py

示例13: PostprocessImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def PostprocessImage(img):
    img = np.resize(img, (3, img.shape[2], img.shape[3]))
    img[0, :] += 123.68
    img[1, :] += 116.779
    img[2, :] += 103.939
    img = np.swapaxes(img, 1, 2)
    img = np.swapaxes(img, 0, 2)
    img = np.clip(img, 0, 255)
    return img.astype('uint8') 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:11,代碼來源:nstyle.py

示例14: PreprocessContentImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def PreprocessContentImage(path, short_edge, dshape=None):
    img = io.imread(path)
    #logging.info("load the content image, size = %s", img.shape[:2])
    factor = float(short_edge) / min(img.shape[:2])
    new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
    resized_img = transform.resize(img, new_size)
    sample = np.asarray(resized_img) * 256
    if dshape is not None:
        # random crop
        xx = int((sample.shape[0] - dshape[2]))
        yy = int((sample.shape[1] - dshape[3]))
        xstart = random.randint(0, xx)
        ystart = random.randint(0, yy)
        xend = xstart + dshape[2]
        yend = ystart + dshape[3]
        sample = sample[xstart:xend, ystart:yend, :]

    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    #logging.info("resize the content image to %s", sample.shape)
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2])) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:28,代碼來源:data_processing.py

示例15: convert_to_batched_episodes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import resize [as 別名]
def convert_to_batched_episodes(self, episodes, max_length=None):
    """Convert batch-major list of episodes to time-major batch of episodes."""
    lengths = [len(ep[-2]) for ep in episodes]
    max_length = max_length or max(lengths)

    new_episodes = []
    for ep, length in zip(episodes, lengths):
      initial, observations, actions, rewards, terminated = ep
      observations = [np.resize(obs, [max_length + 1] + list(obs.shape)[1:])
                      for obs in observations]
      actions = [np.resize(act, [max_length + 1] + list(act.shape)[1:])
                 for act in actions]
      pads = np.array([0] * length + [1] * (max_length - length))
      rewards = np.resize(rewards, [max_length]) * (1 - pads)
      new_episodes.append([initial, observations, actions, rewards,
                           terminated, pads])

    (initial, observations, actions, rewards,
     terminated, pads) = zip(*new_episodes)
    observations = [np.swapaxes(obs, 0, 1)
                    for obs in zip(*observations)]
    actions = [np.swapaxes(act, 0, 1)
               for act in zip(*actions)]
    rewards = np.transpose(rewards)
    pads = np.transpose(pads)

    return (initial, observations, actions, rewards, terminated, pads) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:controller.py


注:本文中的numpy.resize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。