當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.repeat方法代碼示例

本文整理匯總了Python中numpy.repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.repeat方法的具體用法?Python numpy.repeat怎麽用?Python numpy.repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.repeat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: offset_to_pts

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def offset_to_pts(self, center_list, pred_list):
        """Change from point offset to point coordinate."""
        pts_list = []
        for i_lvl in range(len(self.point_strides)):
            pts_lvl = []
            for i_img in range(len(center_list)):
                pts_center = center_list[i_img][i_lvl][:, :2].repeat(
                    1, self.num_points)
                pts_shift = pred_list[i_lvl][i_img]
                yx_pts_shift = pts_shift.permute(1, 2, 0).view(
                    -1, 2 * self.num_points)
                y_pts_shift = yx_pts_shift[..., 0::2]
                x_pts_shift = yx_pts_shift[..., 1::2]
                xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
                xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
                pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
                pts_lvl.append(pts)
            pts_lvl = torch.stack(pts_lvl, 0)
            pts_list.append(pts_lvl)
        return pts_list 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:22,代碼來源:reppoints_head.py

示例2: evaluate_sliding_window

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def evaluate_sliding_window(img_filename, crops):
    img = io.imread(img_filename).astype(np.float32)/255
    if img.ndim == 2: # Handle B/W images
        img = np.expand_dims(img, axis=-1)
        img = np.repeat(img, 3, 2)

    img_crops = np.zeros((batch_size, 227, 227, 3))
    for i in xrange(len(crops)):
        crop = crops[i]
        img_crop = transform.resize(img[crop[1]:crop[1]+crop[3],crop[0]:crop[0]+crop[2]], (227, 227))-0.5
        img_crop = np.expand_dims(img_crop, axis=0)
        img_crops[i,:,:,:] = img_crop

    # compute ranking scores
    scores = sess.run([score_func], feed_dict={image_placeholder: img_crops})

    # find the optimal crop
    idx = np.argmax(scores[:len(crops)])
    best_window = crops[idx]

    # return the best crop
    return (best_window[0], best_window[1], best_window[2], best_window[3]) 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:24,代碼來源:vfn_eval.py

示例3: testMultilabelMatch3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def testMultilabelMatch3(self):
    predictions = np.random.randint(1, 5, size=(100, 1, 1, 1))
    targets = np.random.randint(1, 5, size=(100, 10, 1, 1))
    weights = np.random.randint(0, 2, size=(100, 1, 1, 1))
    targets *= weights

    predictions_repeat = np.repeat(predictions, 10, axis=1)
    expected = (predictions_repeat == targets).astype(float)
    expected = np.sum(expected, axis=(1, 2, 3))
    expected = np.minimum(expected / 3.0, 1.)
    expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0]
    with self.test_session() as session:
      scores, weights_ = metrics.multilabel_accuracy_match3(
          tf.one_hot(predictions, depth=5, dtype=tf.float32),
          tf.constant(targets, dtype=tf.int32))
      a, a_op = tf.metrics.mean(scores, weights_)
      session.run(tf.local_variables_initializer())
      session.run(tf.global_variables_initializer())
      _ = session.run(a_op)
      actual = session.run(a)
    self.assertAlmostEqual(actual, expected, places=6) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics_test.py

示例4: zxy_grid

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat):
    # create linespace grid between bottom and top of tri z
    #subs = 7
    t_min = np.min(tymin)
    t_max = np.max(tymax)
    divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32)            
    
    # figure out which triangles and which co are in each section
    co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax])
    tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax])

    for i, j in zip(co_bools, tri_bools):
        if (np.sum(i) > 0) & (np.sum(j) > 0):
            c3 = c[i]
            t3 = t[j]
        
            c_peat.append(np.repeat(c3, t3.shape[0]))
            t_peat.append(np.tile(t3, c3.shape[0])) 
開發者ID:the3dadvantage,項目名稱:Modeling-Cloth,代碼行數:20,代碼來源:ModelingCloth.py

示例5: repair_out_of_bounds_manually

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def repair_out_of_bounds_manually(X, xl, xu):

    only_1d = (X.ndim == 1)
    X = at_least_2d_array(X)

    if xl is not None:
        xl = np.repeat(xl[None, :], X.shape[0], axis=0)
        X[X < xl] = xl[X < xl]

    if xu is not None:
        xu = np.repeat(xu[None, :], X.shape[0], axis=0)
        X[X > xu] = xu[X > xu]

    if only_1d:
        return X[0, :]
    else:
        return X 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:out_of_bounds_repair.py

示例6: bounds_back

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def bounds_back(problem, X):
    only_1d = (X.ndim == 1)
    X = at_least_2d_array(X)

    if problem.xl is not None and problem.xu is not None:
        xl = np.repeat(problem.xl[None, :], X.shape[0], axis=0)
        xu = np.repeat(problem.xu[None, :], X.shape[0], axis=0)

        # otherwise bounds back into the feasible space
        _range = xu - xl
        X[X < xl] = (xl + np.mod((xl - X), _range))[X < xl]
        X[X > xu] = (xu - np.mod((X - xu), _range))[X > xu]

    if only_1d:
        return X[0, :]
    else:
        return X 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:19,代碼來源:bounds_back_repair.py

示例7: computeUVN_vec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def computeUVN_vec(n, in_, planeID):
    '''
    vectorization version of computeUVN
    @n         N x 3
    @in_      MN x 1
    @planeID   N
    '''
    n = n.copy()
    if (planeID == 2).sum():
        n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1)
    if (planeID == 3).sum():
        n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1)
    n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0)
    assert n.shape[0] == in_.shape[0]
    bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_)
    bs = n[:, [2]]
    out = np.arctan(-bc / (bs + 1e-9))
    return out 
開發者ID:sunset1995,項目名稱:HorizonNet,代碼行數:20,代碼來源:pano_lsd_align.py

示例8: np_sample

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def np_sample(img, coords):
    # a numpy implementation of ImageSample layer
    coords = np.maximum(coords, 0)
    coords = np.minimum(coords, np.array([img.shape[0] - 1, img.shape[1] - 1]))

    lcoor = np.floor(coords).astype('int32')
    ucoor = lcoor + 1
    ucoor = np.minimum(ucoor, np.array([img.shape[0] - 1, img.shape[1] - 1]))
    diff = coords - lcoor
    neg_diff = 1.0 - diff

    lcoory, lcoorx = np.split(lcoor, 2, axis=2)
    ucoory, ucoorx = np.split(ucoor, 2, axis=2)
    diff = np.repeat(diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3))
    neg_diff = np.repeat(neg_diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3))
    diffy, diffx = np.split(diff, 2, axis=2)
    ndiffy, ndiffx = np.split(neg_diff, 2, axis=2)

    ret = img[lcoory, lcoorx, :] * ndiffx * ndiffy + \
        img[ucoory, ucoorx, :] * diffx * diffy + \
        img[lcoory, ucoorx, :] * ndiffy * diffx + \
        img[ucoory, lcoorx, :] * diffy * ndiffx
    return ret[:, :, 0, :] 
開發者ID:tensorpack,項目名稱:dataflow,代碼行數:25,代碼來源:deform.py

示例9: setup_mnist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def setup_mnist(self, img_res):

        print ("Setting up MNIST...")

        if not os.path.exists('datasets/mnist_x.npy'):
            # Load the dataset
            (mnist_X, mnist_y), (_, _) = mnist.load_data()

            # Normalize and rescale images
            mnist_X = self.normalize(mnist_X)
            mnist_X = np.array([imresize(x, img_res) for x in mnist_X])
            mnist_X = np.expand_dims(mnist_X, axis=-1)
            mnist_X = np.repeat(mnist_X, 3, axis=-1)

            self.mnist_X, self.mnist_y = mnist_X, mnist_y

            # Save formatted images
            np.save('datasets/mnist_x.npy', self.mnist_X)
            np.save('datasets/mnist_y.npy', self.mnist_y)
        else:
            self.mnist_X = np.load('datasets/mnist_x.npy')
            self.mnist_y = np.load('datasets/mnist_y.npy')

        print ("+ Done.") 
開發者ID:eriklindernoren,項目名稱:Keras-GAN,代碼行數:26,代碼來源:data_loader.py

示例10: _project

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def _project(self, matrix):
        if self.is_scalar():
            return 1
        else:
            # Note that we use Munkres algorithm, but expand columns from n to m
            # by replicating each column by group size.
            mm = np.repeat(matrix, self.col_sum, axis=1)
            indexes = lap.lapjv(np.asarray(-mm))
            result = np.zeros(self.shape)
            reduce = np.repeat(range(len(self.col_sum)), self.col_sum)
            for row, column in enumerate(indexes[1]):
                # map expanded column index to reduced group index.
                result[row, reduce[column]] = 1
            return result

    # Constrain all entries to be zero that correspond to
    # zeros in the matrix. 
開發者ID:cvxgrp,項目名稱:ncvx,代碼行數:19,代碼來源:group_assign.py

示例11: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def __init__(self, env, k, channel_order='hwc'):
        """Stack k last frames.

        Returns lazy array, which is much more memory efficient.

        See Also
        --------
        baselines.common.atari_wrappers.LazyFrames
        """
        gym.Wrapper.__init__(self, env)
        self.k = k
        self.frames = deque([], maxlen=k)
        self.stack_axis = {'hwc': 2, 'chw': 0}[channel_order]
        orig_obs_space = env.observation_space
        low = np.repeat(orig_obs_space.low, k, axis=self.stack_axis)
        high = np.repeat(orig_obs_space.high, k, axis=self.stack_axis)
        self.observation_space = spaces.Box(
            low=low, high=high, dtype=orig_obs_space.dtype) 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:20,代碼來源:atari_wrappers.py

示例12: render_cubemap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def render_cubemap(self, out_size, mode='blend'):
        # Create coordinate arrays.
        cvec = np.arange(out_size, dtype='float32') - out_size/2        # Coordinate range [-S/2, S/2)
        vec0 = np.ones(out_size*out_size, dtype='float32') * out_size/2 # Constant vector +S/2
        vec1 = np.repeat(cvec, out_size)                                # Increment every N steps
        vec2 = np.tile(cvec, out_size)                                  # Sweep N times
        # Create XYZ coordinate vectors and render each cubemap face.
        render = lambda(xyz): self._render(xyz, out_size, out_size, mode)
        xm = render(np.matrix([-vec0, vec1, vec2]))     # -X face
        xp = render(np.matrix([vec0, vec1, -vec2]))     # +X face
        ym = render(np.matrix([-vec1, -vec0, vec2]))    # -Y face
        yp = render(np.matrix([vec1, vec0, vec2]))      # +Y face
        zm = render(np.matrix([-vec2, vec1, -vec0]))    # -Z face
        zp = render(np.matrix([vec2, vec1, vec0]))      # +Z face
        # Concatenate the individual faces in canonical order:
        # https://en.wikipedia.org/wiki/Cube_mapping#Memory_Addressing
        img_mat = np.concatenate([zp, zm, ym, yp, xm, xp], axis=0)
        return Image.fromarray(img_mat)

    # Get XYZ vectors for an equirectangular render, in raster order.
    # (Each row left to right, with rows concatenates from top to bottom.) 
開發者ID:ooterness,項目名稱:DualFisheye,代碼行數:23,代碼來源:fisheye.py

示例13: _optimize_2D

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def _optimize_2D(nodes, triangles, stay=[]):
    ''' Optimize the locations of the points by moving them towards the center
    of their patch. This is done iterativally for all points for a number of
    iterations and using a .05 step length'''
    edges, tr_edges, adjacency_list = _edge_list(triangles)
    boundary = edges[adjacency_list[:, 1] == -1].reshape(-1)
    stay = np.union1d(boundary, stay)
    stay = stay.astype(int)
    n_iter = 5
    step_length = .05
    mean_bar = np.zeros_like(nodes)
    new_nodes = np.copy(nodes)
    k = np.bincount(triangles.reshape(-1), minlength=len(nodes))
    for n in range(n_iter):
        bar = np.mean(new_nodes[triangles], axis=1)
        for i in range(2):
            mean_bar[:, i] = np.bincount(triangles.reshape(-1),
                                         weights=np.repeat(bar[:, i], 3),
                                         minlength=len(nodes))
        mean_bar /= k[:, None]
        new_nodes += step_length * (mean_bar - new_nodes)
        new_nodes[stay] = nodes[stay]
    return new_nodes 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:25,代碼來源:electrode_placement.py

示例14: nodes_areas

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def nodes_areas(self):
        ''' Areas for all nodes in a surface

        Returns
        ---------
        nd: NodeData
            NodeData structure with normals for each node

        '''
        areas = self.elements_volumes_and_areas()[self.elm.triangles]
        triangle_nodes = self.elm[self.elm.triangles, :3] - 1
        nd = np.bincount(
            triangle_nodes.reshape(-1),
            np.repeat(areas/3., 3), self.nodes.nr
        )

        return NodeData(nd, 'areas') 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:19,代碼來源:mesh_io.py

示例15: combvec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import repeat [as 別名]
def combvec(arrays, out=None):

    arrays = [np.asarray(x) for x in arrays]
    dtype = arrays[0].dtype

    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)

    m = n // arrays[0].size
    out[:,0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        combvec(arrays[1:], out=out[0:m,1:])
        for j in range(1, arrays[0].size):
            out[j*m:(j+1)*m,1:] = out[0:m,1:]
    return out 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:18,代碼來源:misc.py


注:本文中的numpy.repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。