本文整理匯總了Python中numpy.ravel方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ravel方法的具體用法?Python numpy.ravel怎麽用?Python numpy.ravel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.ravel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: prediction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def prediction(self, input_data='', mode='test_data'):
prediction = {}
vote = []
for model in self.models:
prediction = model.prediction(input_data, mode)
vote.append(prediction['prediction'])
prediction_return = max(set(vote), key=vote.count)
if mode == 'future_data':
data = input_data.split()
input_data_x = [float(v) for v in data]
input_data_x = np.ravel(input_data_x)
return {"input_data_x": input_data_x, "input_data_y": None, "prediction": prediction_return}
else:
data = input_data.split()
input_data_x = [float(v) for v in data[:-1]]
input_data_x = np.ravel(input_data_x)
input_data_y = float(data[-1])
return {"input_data_x": input_data_x, "input_data_y": input_data_y, "prediction": prediction_return}
示例2: test_knn
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_knn(datasets_dimred, genes, labels, idx, distr, xlabels):
knns = [ 5, 10, 50, 100 ]
len_distr = len(distr)
for knn in knns:
integrated = assemble(datasets_dimred[:], knn=knn, sigma=150)
X = np.concatenate(integrated)
distr.append(sil(X[idx, :], labels[idx]))
for d in distr[:len_distr]:
print(ttest_ind(np.ravel(X[idx, :]), np.ravel(d)))
xlabels.append(str(knn))
print('')
plt.figure()
plt.boxplot(distr, showmeans=True, whis='range')
plt.xticks(range(1, len(xlabels) + 1), xlabels)
plt.ylabel('Silhouette Coefficient')
plt.ylim((-1, 1))
plt.savefig('param_sensitivity_{}.svg'.format('knn'))
示例3: test_sigma
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_sigma(datasets_dimred, genes, labels, idx, distr, xlabels):
sigmas = [ 10, 50, 100, 200 ]
len_distr = len(distr)
for sigma in sigmas:
integrated = assemble(datasets_dimred[:], sigma=sigma)
X = np.concatenate(integrated)
distr.append(sil(X[idx, :], labels[idx]))
for d in distr[:len_distr]:
print(ttest_ind(np.ravel(X[idx, :]), np.ravel(d)))
xlabels.append(str(sigma))
print('')
plt.figure()
plt.boxplot(distr, showmeans=True, whis='range')
plt.xticks(range(1, len(xlabels) + 1), xlabels)
plt.ylabel('Silhouette Coefficient')
plt.ylim((-1, 1))
plt.savefig('param_sensitivity_{}.svg'.format('sigma'))
示例4: test_alpha
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_alpha(datasets_dimred, genes, labels, idx, distr, xlabels):
alphas = [ 0, 0.05, 0.20, 0.50 ]
len_distr = len(distr)
for alpha in alphas:
integrated = assemble(datasets_dimred[:], alpha=alpha, sigma=150)
X = np.concatenate(integrated)
distr.append(sil(X[idx, :], labels[idx]))
for d in distr[:len_distr]:
print(ttest_ind(np.ravel(X[idx, :]), np.ravel(d)))
xlabels.append(str(alpha))
print('')
plt.figure()
plt.boxplot(distr, showmeans=True, whis='range')
plt.xticks(range(1, len(xlabels) + 1), xlabels)
plt.ylabel('Silhouette Coefficient')
plt.ylim((-1, 1))
plt.savefig('param_sensitivity_{}.svg'.format('alpha'))
示例5: test_approx
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_approx(datasets_dimred, genes, labels, idx, distr, xlabels):
integrated = assemble(datasets_dimred[:], approx=False, sigma=150)
X = np.concatenate(integrated)
distr.append(sil(X[idx, :], labels[idx]))
len_distr = len(distr)
for d in distr[:len_distr]:
print(ttest_ind(np.ravel(X[idx, :]), np.ravel(d)))
xlabels.append('Exact NN')
print('')
plt.figure()
plt.boxplot(distr, showmeans=True, whis='range')
plt.xticks(range(1, len(xlabels) + 1), xlabels)
plt.ylabel('Silhouette Coefficient')
plt.ylim((-1, 1))
plt.savefig('param_sensitivity_{}.svg'.format('approx'))
示例6: test_perplexity
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_perplexity(datasets_dimred, genes, labels, idx,
distr, xlabels):
X = np.concatenate(datasets_dimred)
perplexities = [ 10, 100, 500, 2000 ]
len_distr = len(distr)
for perplexity in perplexities:
embedding = fit_tsne(X, perplexity=perplexity)
distr.append(sil(embedding[idx, :], labels[idx]))
for d in distr[:len_distr]:
print(ttest_ind(np.ravel(X[idx, :]), np.ravel(d)))
xlabels.append(str(perplexity))
print('')
plt.figure()
plt.boxplot(distr, showmeans=True, whis='range')
plt.xticks(range(1, len(xlabels) + 1), xlabels)
plt.ylabel('Silhouette Coefficient')
plt.ylim((-1, 1))
plt.savefig('param_sensitivity_{}.svg'.format('perplexity'))
示例7: kernel_qchem_inter_rf_pos_neg
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def kernel_qchem_inter_rf_pos_neg(self, **kw):
""" This is constructing the E_m-E_n and E_n-E_m matrices """
h_rpa = diagflat(concatenate((ravel(self.FmE),-ravel(self.FmE))))
print(h_rpa.shape)
nf = self.nfermi[0]
nv = self.norbs-self.vstart[0]
vs = self.vstart[0]
neh = nf*nv
x = self.mo_coeff[0,0,:,:,0]
pab2v = self.pb.get_ac_vertex_array()
self.pmn2v = pmn2v = einsum('nb,pmb->pmn', x[:nf,:], einsum('ma,pab->pmb', x[vs:,:], pab2v))
pmn2c = einsum('qp,pmn->qmn', self.hkernel_den, pmn2v)
meri = einsum('pmn,pik->mnik', pmn2c, pmn2v).reshape((nf*nv,nf*nv))
#print(meri.shape)
#meri.fill(0.0)
h_rpa[:neh, :neh] = h_rpa[:neh, :neh]+meri
h_rpa[:neh, neh:] = h_rpa[:neh, neh:]+meri
h_rpa[neh:, :neh] = h_rpa[neh:, :neh]-meri
h_rpa[neh:, neh:] = h_rpa[neh:, neh:]-meri
edif, s2z = np.linalg.eig(h_rpa)
print(abs(h_rpa-h_rpa.transpose()).sum())
print('edif', edif.real*27.2114)
return
示例8: test_big_cell
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_big_cell():
import time
a = 1
ncell = (2, 2, 2)
Lvecs = np.diag(ncell) * a
unit_cell = np.zeros((4, 3))
unit_cell[1:] = (np.ones((3, 3)) - np.eye(3)) * a / 2
grid = np.meshgrid(*map(np.arange, ncell), indexing="ij")
shifts = np.stack(list(map(np.ravel, grid)), axis=1)
supercell = (shifts[:, np.newaxis] + unit_cell[np.newaxis]).reshape(1, -1, 3)
configs = supercell.repeat(1000, axis=0)
configs += np.random.randn(*configs.shape) * 0.1
df = run(Lvecs, configs, 8)
df = df.groupby("qmag").mean().reset_index()
large_q = df[-35:-10]["Sq"]
mean = np.mean(large_q - 1)
rms = np.sqrt(np.mean((large_q - 1) ** 2))
assert np.abs(mean) < 0.01, mean
assert rms < 0.1, rms
示例9: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def __init__(self, qlist=None, Lvecs=None, nq=4):
"""
Inputs:
qlist: (n, 3) array-like. If qlist is provided, Lvecs and nq are ignored
Lvecs: (3, 3) array-like of lattice vectors. Required if qlist is None
nq: int, if qlist is nonzero, use a uniform grid of shape (nq, nq, nq)
"""
if qlist is not None:
self.qlist = qlist
else:
assert (
Lvecs is not None
), "need to provide either list of q vectors or lattice vectors"
Gvecs = np.linalg.inv(Lvecs).T * 2 * np.pi
qvecs = list(map(np.ravel, np.meshgrid(*[np.arange(nq)] * 3)))
qvecs = np.stack(qvecs, axis=1)
self.qlist = np.dot(qvecs, Gvecs)
示例10: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def __call__(self, transform_xy, x1, y1, x2, y2):
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
with np.errstate(invalid='ignore'):
if self.lon_cycle is not None:
lon0 = np.nanmin(lon)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lon -= 360. * ((lon - lon0) > 360.)
if self.lat_cycle is not None:
lat0 = np.nanmin(lat)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lat -= 360. * ((lat - lat0) > 360.)
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
lon_min, lon_max, lat_min, lat_max = \
self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
return lon_min, lon_max, lat_min, lat_max
示例11: block2row
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def block2row(array, row, folder, block_id=None):
if array.shape[0] == windowSize:
# Parameters
name_string = str(block_id[0] + 1)
m,n = array.shape
u = m + 1 - windowSize
v = n + 1 - windowSize
# Get Starting block indices
start_idx = np.arange(u)[:,None]*n + np.arange(v)
# Get offsetted indices across the height and width of input array
offset_idx = np.arange(windowSize)[:,None]*n + np.arange(windowSize)
# Get all actual indices & index into input array for final output
flat_array = np.take(array,start_idx.ravel()[:,None] + offset_idx.ravel())
# Save to (dask) array in .zarr format
file_name = path + folder + name_string + 'r' + row + '.zarr'
zarr.save(file_name, flat_array)
return array
# Divide an image in overlapping blocks
示例12: test_minmax_func
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_minmax_func(self):
# Tests minimum and maximum.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# max doesn't work if shaped
xr = np.ravel(x)
xmr = ravel(xm)
# following are true because of careful selection of data
assert_equal(max(xr), maximum.reduce(xmr))
assert_equal(min(xr), minimum.reduce(xmr))
assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
x = arange(5)
y = arange(5) - 2
x[3] = masked
y[0] = masked
assert_equal(minimum(x, y), where(less(x, y), x, y))
assert_equal(maximum(x, y), where(greater(x, y), x, y))
assert_(minimum.reduce(x) == 0)
assert_(maximum.reduce(x) == 4)
x = arange(4).reshape(2, 2)
x[-1, -1] = masked
assert_equal(maximum.reduce(x, axis=None), 2)
示例13: test_ravel
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def test_ravel(self):
# Tests ravel
a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
aravel = a.ravel()
assert_equal(aravel._mask.shape, aravel.shape)
a = array([0, 0], mask=[1, 1])
aravel = a.ravel()
assert_equal(aravel._mask.shape, a.shape)
# Checks that small_mask is preserved
a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
assert_equal(a.ravel()._mask, [0, 0, 0, 0])
# Test that the fill_value is preserved
a.fill_value = -99
a.shape = (2, 2)
ar = a.ravel()
assert_equal(ar._mask, [0, 0, 0, 0])
assert_equal(ar._data, [1, 2, 3, 4])
assert_equal(ar.fill_value, -99)
# Test index ordering
assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
示例14: _update_diagnostics
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def _update_diagnostics(state, diagnostics):
# Update logscore.
cc_logscore = diagnostics.get('logscore', np.array([]))
new_logscore = map(float, np.ravel(cc_logscore).tolist())
state.diagnostics['logscore'].extend(new_logscore)
# Update column_crp_alpha.
cc_column_crp_alpha = diagnostics.get('column_crp_alpha', [])
new_column_crp_alpha = map(float, np.ravel(cc_column_crp_alpha).tolist())
state.diagnostics['column_crp_alpha'].extend(list(new_column_crp_alpha))
# Update column_partition.
def convert_column_partition(assignments):
return [
(col, int(assgn))
for col, assgn in zip(state.outputs, assignments)
]
new_column_partition = diagnostics.get('column_partition_assignments', [])
if len(new_column_partition) > 0:
assert len(new_column_partition) == len(state.outputs)
trajectories = np.transpose(new_column_partition)[0].tolist()
state.diagnostics['column_partition'].extend(
map(convert_column_partition, trajectories))
示例15: _check_transformer_output
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ravel [as 別名]
def _check_transformer_output(transformer, dataset, expected):
"""
Given a transformer and a spark dataset, check if the transformer
produces the expected results.
"""
analyzed_df = tfs.analyze(dataset)
out_df = transformer.transform(analyzed_df)
# Collect transformed values
out_colnames = list(_output_mapping.values())
_results = []
for row in out_df.select(out_colnames).collect():
curr_res = [row[colname] for colname in out_colnames]
_results.append(np.ravel(curr_res))
out_tgt = np.hstack(_results)
_err_msg = 'not close => shape {} != {}, max_diff {} > {}'
max_diff = np.max(np.abs(expected - out_tgt))
err_msg = _err_msg.format(expected.shape, out_tgt.shape,
max_diff, _all_close_tolerance)
assert np.allclose(expected, out_tgt, atol=_all_close_tolerance), err_msg