本文整理匯總了Python中numpy.range方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.range方法的具體用法?Python numpy.range怎麽用?Python numpy.range使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.range方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_graph_nbrhd_paths
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def get_graph_nbrhd_paths(train_graph, ent, exclude_tuple):
"""Helper to get neighbor (rels, ents) excluding a particular tuple."""
es, er, et = exclude_tuple
neighborhood = []
for i in range(train_graph.max_path_length):
if ent == es:
paths = _proc_paths(train_graph.paths[i][ent], er, et,
train_graph.max_path_length,
(train_graph.rel_pad, train_graph.ent_pad))
else:
paths = _proc_paths(train_graph.paths[i][ent],
max_length=train_graph.max_path_length,
pad=(train_graph.rel_pad, train_graph.ent_pad))
neighborhood += paths
if not neighborhood:
neighborhood = [[]]
neighborhood = np.array(neighborhood, dtype=np.int)
return neighborhood
示例2: ot2bio_ote
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bio_ote(ote_tag_sequence):
"""
ot2bio function for ote tag sequence
:param ote_tag_sequence:
:return:
"""
new_ote_sequence = []
n_tag = len(ote_tag_sequence)
prev_ote_tag = '$$$'
for i in range(n_tag):
cur_ote_tag = ote_tag_sequence[i]
assert cur_ote_tag == 'O' or cur_ote_tag == 'T'
if cur_ote_tag == 'O':
new_ote_sequence.append(cur_ote_tag)
else:
# cur_ote_tag is T
if prev_ote_tag == 'T':
new_ote_sequence.append('I')
else:
# cur tag is at the beginning of the opinion target
new_ote_sequence.append('B')
prev_ote_tag = cur_ote_tag
return new_ote_sequence
示例3: ot2bieos_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bieos_batch(ote_tags, ts_tags):
"""
batch version of function ot2bieos
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
:param ote_tags:
:param ts_tags:
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = ot2bieos(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags
示例4: bio2ot_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def bio2ot_batch(ote_tags, ts_tags):
"""
batch version of function bio2ot
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = bio2ot(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags
# TODO
示例5: set_cid
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def set_cid(dataset, char_vocab):
"""
set cid field for the records in the dataset
:param dataset: dataset
:param char_vocab: vocabulary of character
:return:
"""
n_records = len(dataset)
cids = []
for i in range(n_records):
words = dataset[i]['words']
cids = []
for w in words:
cids.append([char_vocab[ch] for ch in list(w)])
dataset[i]['cids'] = list(cids)
return dataset
示例6: conv_tower
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def conv_tower(inputs, filters_init, filters_mult=1, repeat=1, **kwargs):
"""Construct a reducing convolution block.
Args:
inputs: [batch_size, seq_length, features] input sequence
filters_init: Initial Conv1D filters
filters_mult: Multiplier for Conv1D filters
repeat: Conv block repetitions
Returns:
[batch_size, seq_length, features] output sequence
"""
# flow through variable current
current = inputs
# initialize filters
rep_filters = filters_init
for ri in range(repeat):
# convolution
current = conv_block(current,
filters=int(np.round(rep_filters)),
**kwargs)
# update filters
rep_filters *= filters_mult
return current
示例7: xception_tower
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def xception_tower(inputs, filters_init, filters_mult=1, repeat=1, **kwargs):
"""Construct a reducing convolution block.
Args:
inputs: [batch_size, seq_length, features] input sequence
filters_init: Initial Conv1D filters
filters_mult: Multiplier for Conv1D filters
repeat: Conv block repetitions
Returns:
[batch_size, seq_length, features] output sequence
"""
# flow through variable current
current = inputs
# initialize filters
rep_filters = filters_init
for ri in range(repeat):
# convolution
current = xception_block(current,
filters=int(np.round(rep_filters)),
**kwargs)
# update filters
rep_filters *= filters_mult
return current
############################################################
# Attention
############################################################
示例8: position_encoding
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def position_encoding(current, min_rate=.0001):
"""Add original Transformer positional encodings,
Args:
current: [batch_size, seq_length, features] sequence
min_rate:
Returns:
sequence w/ positional encodings concatenated.
"""
seq_length = current.shape[1].value
features = current.shape[2].value
assert(features % 2 == 0)
# compute angle rates
angle_rate_exponents = np.linspace(0, 1, features//2)
angle_rates = min_rate**angle_rate_exponents
# compute angle radians
positions = np.range(seq_length)
angle_rads = positions[:, np.newaxis] * angle_rates[np.newaxis, :]
# sines and cosines
sines = np.sin(angle_rads)
cosines = np.cos(angle_rads)
pos_encode = np.concatenate([sines, cosines], axis=-1)
return current
示例9: dense_image_warp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def dense_image_warp(image, flow):
# batch_size, height, width, channels = (array_ops.shape(image)[0],
# array_ops.shape(image)[1],
# array_ops.shape(image)[2],
# array_ops.shape(image)[3])
batch_size, height, width, channels = (np.shape(image)[0],
np.shape(image)[1],
np.shape(image)[2],
np.shape(image)[3])
# The flow is defined on the image grid. Turn the flow into a list of query
# points in the grid space.
# grid_x, grid_y = array_ops.meshgrid(
# math_ops.range(width), math_ops.range(height))
# stacked_grid = math_ops.cast(
# array_ops.stack([grid_y, grid_x], axis=2), flow.dtype)
# batched_grid = array_ops.expand_dims(stacked_grid, axis=0)
# query_points_on_grid = batched_grid - flow
# query_points_flattened = array_ops.reshape(query_points_on_grid,
# [batch_size, height * width, 2])
grid_x, grid_y = np.meshgrid(
np.range(width), np.range(height))
stacked_grid = np.cast(
np.stack([grid_y, grid_x], axis=2), flow.dtype)
batched_grid = np.expand_dims(stacked_grid, axis=0)
query_points_on_grid = batched_grid - flow
query_points_flattened = np.reshape(query_points_on_grid,
[batch_size, height * width, 2])
# Compute values at the query points, then reshape the result back to the
# image grid.
interpolated = interp2d(image, query_points_flattened)
interpolated = np.reshape(interpolated,
[batch_size, height, width, channels])
return interpolated
示例10: _sample_next_edges
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def _sample_next_edges(edges, to_sample):
if len(edges) < to_sample:
return edges
sample_ids = np.random.choice(range(len(edges)), size=to_sample,
replace=False)
return [edges[i] for i in sample_ids]
示例11: sample_or_pad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def sample_or_pad(arr, max_size, pad_value=-1):
"""Helper to pad arr along axis 0 to max_size or subsample to max_size."""
arr_shape = arr.shape
if arr.size == 0:
if isinstance(pad_value, list):
result = np.ones((max_size, len(pad_value)), dtype=arr.dtype) * pad_value
else:
result = np.ones((max_size,), dtype=arr.dtype) * pad_value
elif arr.shape[0] > max_size:
if arr.ndim == 1:
result = np.random.choice(arr, size=max_size, replace=False)
else:
idx = np.arange(arr.shape[0])
np.random.shuffle(idx)
result = arr[idx[:max_size], :]
else:
padding = np.ones((max_size-arr.shape[0],) + arr_shape[1:],
dtype=arr.dtype)
if isinstance(pad_value, list):
for i in range(len(pad_value)):
padding[..., i] *= pad_value[i]
else:
padding *= pad_value
result = np.concatenate((arr, padding), axis=0)
# result = np.pad(arr,
# [[0, max_size-arr.shape[0]]] + ([[0, 0]] * (arr.ndim-1)),
# "constant", constant_values=pad_value)
return result
示例12: ot2bio_ts
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bio_ts(ts_tag_sequence):
"""
ot2bio function for ts tag sequence
:param ts_tag_sequence:
:return:
"""
new_ts_sequence = []
n_tag = len(ts_tag_sequence)
prev_pos = '$$$'
for i in range(n_tag):
cur_ts_tag = ts_tag_sequence[i]
if cur_ts_tag == 'O':
new_ts_sequence.append('O')
cur_pos = 'O'
else:
# current tag is subjective tag, i.e., cur_pos is T
# print(cur_ts_tag)
cur_pos, cur_sentiment = cur_ts_tag.split('-')
if cur_pos == prev_pos:
# prev_pos is T
new_ts_sequence.append('I-%s' % cur_sentiment)
else:
# prev_pos is O
new_ts_sequence.append('B-%s' % cur_sentiment)
prev_pos = cur_pos
return new_ts_sequence
示例13: ot2bio_ote_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bio_ote_batch(ote_tag_seqs):
"""
batch version of function ot2bio_ote
:param ote_tags:
:return:
"""
new_ote_tag_seqs = []
n_seqs = len(ote_tag_seqs)
for i in range(n_seqs):
new_ote_seq = ot2bio_ote(ote_tag_sequence=ote_tag_seqs[i])
new_ote_tag_seqs.append(new_ote_seq)
return new_ote_tag_seqs
示例14: ot2bio_ts_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bio_ts_batch(ts_tag_seqs):
"""
batch version of function ot2bio_ts
:param ts_tag_seqs:
:return:
"""
new_ts_tag_seqs = []
n_seqs = len(ts_tag_seqs)
for i in range(n_seqs):
new_ts_seq = ot2bio_ts(ts_tag_sequence=ts_tag_seqs[i])
new_ts_tag_seqs.append(new_ts_seq)
return new_ts_tag_seqs
示例15: ot2bio_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import range [as 別名]
def ot2bio_batch(ote_tags, ts_tags):
"""
batch version of function ot2bio
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = ot2bio(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags