本文整理匯總了Python中numpy.random.random_integers方法的典型用法代碼示例。如果您正苦於以下問題:Python random.random_integers方法的具體用法?Python random.random_integers怎麽用?Python random.random_integers使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.random
的用法示例。
在下文中一共展示了random.random_integers方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_padding
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def add_padding(packet, bytes_padding:int = 0, user_padding:bool=True, rnd:bool = False):
"""
Adds padding to a packet with the given amount of bytes, but a maximum of 100 bytes, if called by the user.
:param packet: the packet that will be extended with the additional payload
:param bytes_padding: the amount of bytes that will be appended to the packet. Capped to 100,
if called by the user.
:param user_padding: true, if the function add_padding by the user and not within the code
:param rnd: adds a random padding between 0 and bytes_padding, if true
:return: the initial packet, extended with the wanted amount of bytes of padding
"""
if user_padding == True and bytes_padding > 100:
bytes_padding = 100
if rnd is True:
r = int(round(bytes_padding / 4)) # sets bytes_padding to any number between 0 and
bytes_padding = random2.random_integers(0, r) * 4 # bytes_padding, that's dividable by 4
payload = generate_payload(bytes_padding)
packet[Raw].load += Raw(load=payload).load
return packet
示例2: __define_suppliers
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def __define_suppliers(self):
self.hierarchy['Suppliers'] = []
for SupplierID in range(1, n_suppliers + 1):
supplier_dict = {}
supplier_dict['SupplierID'] = str(SupplierID)
supplier_dict['SupplierName'] = 'Supplier ' + supplier_dict['SupplierID']
supplier_dict['ShippingCost'] = uniform(min_shipping_cost, max_shipping_cost)
supplier_dict['MinShippingVolume'] = uniform(min_min_shipping_volume, max_min_shipping_volume)
supplier_dict['MaxShippingVolume'] = supplier_dict['MinShippingVolume'] + uniform(min_shipping_volume_interval, max_shipping_volume_interval)
supplier_dict['FixedOrderSize'] = int(random_integers(min_fixed_order_size, max_fixed_order_size))
supplier_dict['PurchaseCostBudget'] = uniform(min_purchase_cost_budget, max_purchase_cost_budget)
self.hierarchy['Suppliers'].append(supplier_dict)
# definitions of storage
示例3: corrupt_image
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def corrupt_image(img, MAR_prob=0, min_rects=0, max_rects=0, min_width=0, max_width=0, apply_to_all_channels=False):
def generate_channel_mask():
mask = np.zeros(img.shape[0:2], dtype=np.bool)
if MAR_prob > 0:
mask[(random_sample(mask.shape) < MAR_prob)] = True
if max_rects > 0 and max_width > 0:
h, w = mask.shape
num_rects = random_integers(min_rects, max_rects)
for i in range(num_rects):
px1 = random_integers(0, w - min(max(min_width, 1), w))
py1 = random_integers(0, h - min(max(min_width, 1), h))
px2 = px1 + min_width + random_integers(0, max(min(w - px1 - min_width, max_width - min_width), 0));
py2 = py1 + min_width + random_integers(0, max(min(h - py1 - min_width, max_width - min_width), 0));
if px1 <= px2 and py1 <= py2:
mask[py1:py2, px1:px2] = True
else:
# One of the sides has length 0, so we should remove any pixels4
pass
return mask
new_img = img.copy()
channels = 1 if len(new_img.shape) == 2 else new_img.shape[-1]
global_mask = np.zeros(img.shape, dtype=np.bool)
if channels == 1 or apply_to_all_channels:
mask = generate_channel_mask()
if channels == 1:
global_mask[:, :] = mask
else:
for i in xrange(channels):
global_mask[:, :, i] = mask
else:
global_mask = np.zeros(img.shape, dtype=np.bool)
for i in xrange(channels):
global_mask[:,:,i] = generate_channel_mask()
new_img[global_mask] = 0
return (new_img, 1.0 * global_mask)
# Process command line inputs
示例4: __define_brands_products
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def __define_brands_products(self):
# definition of brands and products
self.hierarchy['Brands'] = []
for BrandID in range(1, n_brands + 1):
brand_dict = {}
brand_dict['BrandID'] = str(BrandID)
brand_dict['BrandName'] = 'Brand ' + brand_dict['BrandID']
brand_dict['Desirability'] = uniform(min_brand_desirability, max_brand_desirability)
# definition of products of the given brand in the given store department
brand_dict['Products'] = []
# For the time being, only one product per brand. This will change in the future
product_dict = {}
product_dict['ProductID'] = brand_dict['BrandID'] + '_1'
product_dict['ProductName'] = brand_dict['BrandName'] + ' Product ' + product_dict['ProductID']
product_dict['ProductVolume'] = uniform(min_product_volume, max_product_volume)
product_dict['MSRP'] = 0 # will be updated later on, based on the purchase cost
if BrandID <= n_brands/2 or choice([-1,1]) == 1: # first half of the brands have perishable products
# some brands in the second half also have perishable products
product_dict['ShelfLife'] = str(random_integers(min_shelf_life, max_shelf_life)) + ' days'
else:
product_dict['ShelfLife'] = '10000 days'
brand_dict['Products'].append(product_dict)
self.hierarchy['Brands'].append(brand_dict)
# definitions of suppliers
示例5: __store_product_storage
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def __store_product_storage(self):
product_storage = []
for StorageID in range(1, n_storage_spaces + 1):
start_brand = int((StorageID - 1) * n_brands / n_storage_spaces)
end_brand = int(StorageID * n_brands / n_storage_spaces)
storage_dict = {}
storage_dict['StorageID'] = StorageID
storage_dict['Products'] = []
# place products in a given storage space
for BrandID in range(start_brand, end_brand):
for product in self.hierarchy['Brands'][BrandID]['Products']:
product_storage_dict = {}
product_storage_dict['ProductID'] = product['ProductID']
product_storage_dict['StorageCost'] = uniform(min_storage_cost, max_storage_cost)
product_storage_dict['MissedSaleCost'] = uniform(min_missed_sale_cost, max_missed_sale_cost)
product_storage_dict['MinInventorySize'] = int(random_integers(min_min_inventory_size, max_min_inventory_size))
product_storage_dict['MaxInventorySize'] = product_storage_dict['MinInventorySize'] + int(random_integers(min_inventory_size_interval, max_inventory_size_interval))
storage_dict['Products'].append(product_storage_dict)
product_storage.append(storage_dict)
return product_storage
# definitions of suppliers of products
示例6: __store_product_supplier
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def __store_product_supplier(self):
product_supplier = []
for SupplierID in range(1, n_suppliers + 1):
start_brand = int((SupplierID - 1) * n_brands / n_suppliers)
end_brand = int(SupplierID * n_brands / n_suppliers)
supplier_dict = {}
supplier_dict['SupplierID'] = SupplierID
supplier_dict['Products'] = []
# place products in a given storage space
for BrandID in range(start_brand, end_brand):
for product in self.hierarchy['Brands'][BrandID]['Products']:
product_supplier_dict = {}
product_supplier_dict['ProductID'] = product['ProductID']
product_supplier_dict['LeadTime'] = int(random_integers(min_lead_time, max_lead_time))
product_supplier_dict['LeadTimeConfidenceInterval'] = int(random_integers(min_lead_time_conf_interval, max_lead_time_conf_interval))
product_supplier_dict['MinOrderQuantity'] = int(random_integers(min_min_order_quantity, max_min_order_quantity))
product_supplier_dict['MaxOrderQuantity'] = product_supplier_dict['MinOrderQuantity'] + int(random_integers(min_order_quantity_interval, max_order_quantity_interval))
product_supplier_dict['QuantityMultiplier'] = int(random_integers(min_quantity_multiplier, max_quantity_multiplier))
product_supplier_dict['Cost'] = uniform(min_purchase_cost, max_purchase_cost)
product_supplier_dict['BackorderCost'] = product_supplier_dict['Cost'] * uniform(min_backorder_multiplier, max_backorder_multiplier)
product_supplier_dict['PurchaseCostBudget'] = product_supplier_dict['Cost'] * uniform(min_purchase_cost_budget_multiplier, max_purchase_cost_budget_multiplier)
product_supplier_dict['ShippingCost'] = product_supplier_dict['Cost'] * uniform(min_shipping_multiplier, max_shipping_multiplier)
product_supplier_dict['ShipmentFreq'] = str(random_integers(min_ordering_frequency, max_ordering_frequency)) + " days"
product_supplier_dict['ServiceLevel'] = uniform(min_service_level, max_service_level)
supplier_dict['Products'].append(product_supplier_dict)
product_supplier.append(supplier_dict)
return product_supplier
# Create static data: definitions of stores, storage spaces, products and suppliers
示例7: __compute_arrivals
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def __compute_arrivals(self):
min_order = max(1,self.min_order_quantity)
if self.max_order_quantity < 0:
max_order = 10000
else:
max_order = min(10000, self.max_order_quantity)
order_arrival = int(random_integers(min_order, max_order))
if self.quantity_multiplier > 0:
return max(min_order, order_arrival - (order_arrival % self.quantity_multiplier))
else:
return order_arrival
示例8: step
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random_integers [as 別名]
def step(self):
self.mcbar_attempts += 1
# Get energy, volume for current system configuration
E0 = self.atoms.get_potential_energy()
V0 = self.atoms.get_volume()
cell0 = self.atoms.get_cell()
dV = np.zeros(3)
# Random change to fractional unit cell volume in range (-0.5*dV_max,0.5*dV_max)
if self.iso:
dV[:] = (rand.random() - 0.5) * self.dV_max
else:
dim = rand.random_integers(0,2)
dV[dim] = (rand.random() - 0.5) * self.dV_max
rmu = (1. + dV) ** (1./3.)
# Is this correct for non-rectangular cells?
cell = cell0.copy()
cell[0] *= rmu[0]
cell[1] *= rmu[1]
cell[2] *= rmu[2]
# Scale system to new unit cell and get new energy, volume
self.atoms.set_cell(cell,scale_atoms=True)
E = self.atoms.get_potential_energy()
V = self.atoms.get_volume()
pv_work = self.pres * (V - V0) * PCONV
mc_term = np.exp((E - E0 + pv_work) * self.beta + self.natoms * np.log(rmu[0]*rmu[1]*rmu[2]))
mc_check = rand.random()
# Monte Carlo condition check
if mc_check < mc_term:
self.mcbar_successes += 1
else:
# On failure, revert the system to previous volume
self.atoms.set_cell(cell0,scale_atoms=True)
# Check if we are succeeding too often or not often enough, and change dV_max if so
if self.mcbar_attempts % self.dV_interval == 0:
if self.mcbar_successes >= 0.75 * self.mcbar_attempts:
print("MC BAR INCREASE DVMAX",self.mcbar_attempts,self.mcbar_successes)
self.dV_max *= self.dV_scale
self.mcbar_attempts = 0
self.mcbar_successes = 0
elif self.mcbar_successes <= 0.25 * self.mcbar_attempts:
print("MC BAR DECREASE DVMAX:",self.mcbar_attempts,self.mcbar_successes)
self.dV_max /= self.dV_scale
self.mcbar_attempts = 0
self.mcbar_successes = 0