當前位置: 首頁>>代碼示例>>Python>>正文


Python random.random方法代碼示例

本文整理匯總了Python中numpy.random.random方法的典型用法代碼示例。如果您正苦於以下問題:Python random.random方法的具體用法?Python random.random怎麽用?Python random.random使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.random的用法示例。


在下文中一共展示了random.random方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: start_new_particles

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def start_new_particles(self):
        """
        Start some new particles from the emitters. We roll the dice
        starts_at_once times, seeing if we can start each particle based
        on starts_prob. If we start, the particle gets a color form
        the palette and a velocity from the vel list.
        """
        for e_pos, e_dir, e_vel, e_range, e_color, e_pal in self.emitters:
            for roll in range(self.starts_at_once):
                if random.random() < self.starts_prob:  # Start one?
                    p_vel = self.vel[random.choice(len(self.vel))]
                    if e_dir < 0 or e_dir == 0 and random.random() > 0.5:
                        p_vel = -p_vel
                    self.particles.append((
                        p_vel,  # Velocity
                        e_pos,  # Position
                        int(e_range // abs(p_vel)),  # steps to live
                        e_pal[
                            random.choice(len(e_pal))],  # Color
                        255))  # Brightness 
開發者ID:ManiacalLabs,項目名稱:BiblioPixelAnimations,代碼行數:22,代碼來源:__init__.py

示例2: select

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def select(self, population: Population, n: int = 1) -> Sequence[Individual]:
        """Return `n` individuals from the population.

        Parameters
        ----------
        population
            A Population of Individuals.
        n : int
            The number of parents to select from the population. Default is 1.

        Returns
        -------
        Sequence[Individual]
            The selected Individuals.

        """
        super().select(population, n)
        population_total_errors = np.array([i.total_error for i in population])
        sum_of_total_errors = np.sum(population_total_errors)
        probabilities = 1.0 - (population_total_errors / sum_of_total_errors)
        selected_ndxs = np.searchsorted(np.cumsum(probabilities), random(n))
        return [population[ndx] for ndx in selected_ndxs] 
開發者ID:erp12,項目名稱:pyshgp,代碼行數:24,代碼來源:selection.py

示例3: _gaussian_noise_factor

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def _gaussian_noise_factor():
    """Return Gaussian noise of mean 0, std dev 1.

    Returns
    --------
    Float samples from Gaussian distribution.

    Examples
    --------
    >>> gaussian_noise_factor()
    1.43412557975
    >>> gaussian_noise_factor()
    -0.0410900866765

    """
    return math.sqrt(-2.0 * math.log(random())) * math.cos(2.0 * math.pi * random())


# Mutations

# @TODO: Implement all the common literal mutations. 
開發者ID:erp12,項目名稱:pyshgp,代碼行數:23,代碼來源:variation.py

示例4: produce

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def produce(self, parents: Sequence[Genome], spawner: GeneSpawner = None) -> Genome:
        """Produce a child Genome from parent Genomes and optional GenomeSpawner.

        Parameters
        ----------
        parents
            A list of parent Genomes given to the operator.
        spawner
            A GeneSpawner that can be used to produce new genes (aka Atoms).

        """
        super().produce(parents, spawner)
        self.checknum_parents(parents)
        new_genome = Genome()
        for atom in parents[0]:
            if isinstance(atom, Literal) and self.push_type == atom.push_type and random() < self.rate:
                new_atom = self._mutate_literal(atom)
            else:
                new_atom = atom
            new_genome = new_genome.append(new_atom)
        return new_genome 
開發者ID:erp12,項目名稱:pyshgp,代碼行數:23,代碼來源:variation.py

示例5: randomise

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def randomise(self, value):
        """Randomise `value` with the mechanism.

        Parameters
        ----------
        value : int
            The value to be randomised.

        Returns
        -------
        int
            The randomised value.

        """
        self.check_inputs(value)

        # Need to account for overlap of 0-value between distributions of different sign
        unif_rv = random() - 0.5
        unif_rv *= 1 + np.exp(self._scale)
        sgn = -1 if unif_rv < 0 else 1

        # Use formula for geometric distribution, with ratio of exp(-epsilon/sensitivity)
        return int(np.round(value + sgn * np.floor(np.log(sgn * unif_rv) / self._scale))) 
開發者ID:IBM,項目名稱:differential-privacy-library,代碼行數:25,代碼來源:geometric.py

示例6: randomise

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def randomise(self, value):
        """Randomise `value` with the mechanism.

        Parameters
        ----------
        value : str
            The value to be randomised.

        Returns
        -------
        str
            The randomised value.

        """
        self.check_inputs(value)

        indicator = 0 if value == self._value0 else 1

        unif_rv = random() * (np.exp(self._epsilon) + 1)

        if unif_rv > np.exp(self._epsilon) + self._delta:
            indicator = 1 - indicator

        return self._value0 if indicator == 0 else self._value1 
開發者ID:IBM,項目名稱:differential-privacy-library,代碼行數:26,代碼來源:binary.py

示例7: randomise

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def randomise(self, value):
        self.check_inputs(value)

        if self._scale == 0:
            return value

        tau = 1 / (1 + np.floor(self._scale))
        sigma2 = self._scale ** 2

        while True:
            geom_x = 0
            while self._bernoulli_exp(tau):
                geom_x += 1

            bern_b = np.random.binomial(1, 0.5)
            if bern_b and not geom_x:
                continue

            lap_y = int((1 - 2 * bern_b) * geom_x)
            bern_c = self._bernoulli_exp((abs(lap_y) - tau * sigma2) ** 2 / 2 / sigma2)
            if bern_c:
                return value + lap_y 
開發者ID:IBM,項目名稱:differential-privacy-library,代碼行數:24,代碼來源:gaussian.py

示例8: _bernoulli_exp

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def _bernoulli_exp(self, gamma):
        """Sample from Bernoulli(exp(-gamma))

        Adapted from Appendix A of https://arxiv.org/pdf/2004.00010.pdf

        """
        if gamma > 1:
            gamma_ceil = np.ceil(gamma)
            for _ in np.arange(gamma_ceil):
                if not self._bernoulli_exp(gamma / gamma_ceil):
                    return 0

            return 1

        counter = 1

        while np.random.binomial(1, gamma / counter):
            counter += 1

        return counter % 2 
開發者ID:IBM,項目名稱:differential-privacy-library,代碼行數:22,代碼來源:gaussian.py

示例9: randomise

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def randomise(self, value):
        """Randomise `value` with the mechanism.

        Parameters
        ----------
        value : float
            The value to be randomised.

        Returns
        -------
        float
            The randomised value.

        """
        self.check_inputs(value)

        scale = self._sensitivity / (self._epsilon - np.log(1 - self._delta))

        unif_rv = random() - 0.5

        return value - scale * np.sign(unif_rv) * np.log(1 - 2 * np.abs(unif_rv)) 
開發者ID:IBM,項目名稱:differential-privacy-library,代碼行數:23,代碼來源:laplace.py

示例10: test_all_1d_norm_preserving

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def test_all_1d_norm_preserving(self):
        # verify that round-trip transforms are norm-preserving
        x = random(30)
        x_norm = np.linalg.norm(x)
        n = x.size * 2
        func_pairs = [(np.fft.fft, np.fft.ifft),
                      (np.fft.rfft, np.fft.irfft),
                      # hfft: order so the first function takes x.size samples
                      #       (necessary for comparison to x_norm above)
                      (np.fft.ihfft, np.fft.hfft),
                      ]
        for forw, back in func_pairs:
            for n in [x.size, 2*x.size]:
                for norm in [None, 'ortho']:
                    tmp = forw(x, n=n, norm=norm)
                    tmp = back(tmp, n=n, norm=norm)
                    assert_array_almost_equal(x_norm,
                                              np.linalg.norm(tmp)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_fftpack.py

示例11: test_get_standard_colors_random_seed

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def test_get_standard_colors_random_seed(self):
        # GH17525
        df = DataFrame(np.zeros((10, 10)))

        # Make sure that the random seed isn't reset by _get_standard_colors
        plotting.parallel_coordinates(df, 0)
        rand1 = random.random()
        plotting.parallel_coordinates(df, 0)
        rand2 = random.random()
        assert rand1 != rand2

        # Make sure it produces the same colors every time it's called
        from pandas.plotting._style import _get_standard_colors
        color1 = _get_standard_colors(1, color_type='random')
        color2 = _get_standard_colors(1, color_type='random')
        assert color1 == color2 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_misc.py

示例12: test_get_standard_colors_no_appending

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def test_get_standard_colors_no_appending(self):
        # GH20726

        # Make sure not to add more colors so that matplotlib can cycle
        # correctly.
        from matplotlib import cm
        color_before = cm.gnuplot(range(5))
        color_after = plotting._style._get_standard_colors(
            1, color=color_before)
        assert len(color_after) == len(color_before)

        df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))

        color_list = cm.gnuplot(np.linspace(0, 1, 16))
        p = df.A.plot.bar(figsize=(16, 7), color=color_list)
        assert (p.patches[1].get_facecolor()
                == p.patches[17].get_facecolor()) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_misc.py

示例13: connections

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def connections(self,X,Y,F,A,R):

    indsx,indsy = F.nonzero()
    mask = indsx >= indsy 
    for i,j in zip(indsx[mask],indsy[mask]):
      a = A[i,j]
      d = R[i,j]
      scales = random(GRAINS)*d
      xp = X[i] - scales*cos(a)
      yp = Y[i] - scales*sin(a)
     
      r,g,b = self.colors[ (i*NUM+j) % self.n_colors ]
      self.ctx.set_source_rgba(r,g,b,ALPHA)

      for x,y in zip(xp,yp):
        self.ctx.rectangle(x,y,ONE,ONE)
        self.ctx.fill() 
開發者ID:inconvergent,項目名稱:orbitals,代碼行數:19,代碼來源:orbitals.py

示例14: evaluate_cycle

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def evaluate_cycle(self):

        self.logger.debug('Full neighbors assignment for cycle %s : %s ',
                          self.cycle_count, self.current_cycle)

        arg_min, min_cost = self.compute_best_value()
        self.current_cycle[self.variable.name] = self.current_value
        current_cost = assignment_cost(self.current_cycle, self.constraints)

        self.logger.debug(
            "Evaluate cycle %s: current cost %s - best cost %s",
            self.cycle_count, current_cost, min_cost)

        if current_cost - min_cost > 0 and 0.5 > random.random():
            self.value_selection(arg_min)
            self.logger.debug(
                "Select new value %s for better cost %s ",
                self.cycle_count, min_cost)
        else:
            self.logger.debug(
                "Do not change value %s ", self.current_value)

        self.new_cycle()
        self.current_cycle, self.next_cycle = self.next_cycle, {}
        self.post_to_all_neighbors(DsaMessage(self.current_value)) 
開發者ID:Orange-OpenSource,項目名稱:pyDcop,代碼行數:27,代碼來源:dsa-tuto.py

示例15: _get_glyph

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import random [as 別名]
def _get_glyph(gnum, height, width, shift_prob, shift_size):
  if isinstance(gnum, list):
    n = randint(*gnum)
  else:
    n = gnum

  glyph = random_points_in_circle(
      n, 0, 0, 0.5
      )*array((width, height), 'float')
  _spatial_sort(glyph)

  if random()<shift_prob:
    shift = ((-1)**randint(0,2))*shift_size*height
    glyph[:,1] += shift
  if random()<0.5:
    ii = randint(0,n-1,size=(1))
    xy = glyph[ii,:]
    glyph = row_stack((glyph, xy))


  return glyph 
開發者ID:inconvergent,項目名稱:sand-glyphs,代碼行數:23,代碼來源:glyphs.py


注:本文中的numpy.random.random方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。