本文整理匯總了Python中numpy.random.randn方法的典型用法代碼示例。如果您正苦於以下問題:Python random.randn方法的具體用法?Python random.randn怎麽用?Python random.randn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.random
的用法示例。
在下文中一共展示了random.randn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_errors
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_errors(self):
x = np.random.randn(1, 2, 3)
assert_raises_regex(np.AxisError, 'source.*out of bounds',
np.moveaxis, x, 3, 0)
assert_raises_regex(np.AxisError, 'source.*out of bounds',
np.moveaxis, x, -4, 0)
assert_raises_regex(np.AxisError, 'destination.*out of bounds',
np.moveaxis, x, 0, 5)
assert_raises_regex(ValueError, 'repeated axis in `source`',
np.moveaxis, x, [0, 0], [0, 1])
assert_raises_regex(ValueError, 'repeated axis in `destination`',
np.moveaxis, x, [0, 1], [1, 1])
assert_raises_regex(ValueError, 'must have the same number',
np.moveaxis, x, 0, [0, 1])
assert_raises_regex(ValueError, 'must have the same number',
np.moveaxis, x, [0, 1], [0])
示例2: test_window_with_args
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_window_with_args(self):
# make sure that we are aggregating window functions correctly with arg
r = Series(np.random.randn(100)).rolling(window=10, min_periods=1,
win_type='gaussian')
expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1)
expected.columns = ['<lambda>', '<lambda>']
result = r.aggregate([lambda x: x.mean(std=10),
lambda x: x.mean(std=.01)])
tm.assert_frame_equal(result, expected)
def a(x):
return x.mean(std=10)
def b(x):
return x.mean(std=0.01)
expected = concat([r.mean(std=10), r.mean(std=.01)], axis=1)
expected.columns = ['a', 'b']
result = r.aggregate([a, b])
tm.assert_frame_equal(result, expected)
示例3: test_cmov_window_corner
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_cmov_window_corner(self):
# GH 8238
# all nan
vals = pd.Series([np.nan] * 10)
result = vals.rolling(5, center=True, win_type='boxcar').mean()
assert np.isnan(result).all()
# empty
vals = pd.Series([])
result = vals.rolling(5, center=True, win_type='boxcar').mean()
assert len(result) == 0
# shorter than window
vals = pd.Series(np.random.randn(5))
result = vals.rolling(10, win_type='boxcar').mean()
assert np.isnan(result).all()
assert len(result) == 5
示例4: test_flex_binary_frame
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_flex_binary_frame(self, method):
series = self.frame[1]
res = getattr(series.rolling(window=10), method)(self.frame)
res2 = getattr(self.frame.rolling(window=10), method)(series)
exp = self.frame.apply(lambda x: getattr(
series.rolling(window=10), method)(x))
tm.assert_frame_equal(res, exp)
tm.assert_frame_equal(res2, exp)
frame2 = self.frame.copy()
frame2.values[:] = np.random.randn(*frame2.shape)
res3 = getattr(self.frame.rolling(window=10), method)(frame2)
exp = DataFrame({k: getattr(self.frame[k].rolling(
window=10), method)(frame2[k]) for k in self.frame})
tm.assert_frame_equal(res3, exp)
示例5: test_rolling_skew_edge_cases
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_rolling_skew_edge_cases(self):
all_nan = Series([np.NaN] * 5)
# yields all NaN (0 variance)
d = Series([1] * 5)
x = d.rolling(window=5).skew()
tm.assert_series_equal(all_nan, x)
# yields all NaN (window too small)
d = Series(np.random.randn(5))
x = d.rolling(window=2).skew()
tm.assert_series_equal(all_nan, x)
# yields [NaN, NaN, NaN, 0.177994, 1.548824]
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
])
expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824])
x = d.rolling(window=4).skew()
tm.assert_series_equal(expected, x)
示例6: test_rolling_kurt_edge_cases
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_rolling_kurt_edge_cases(self):
all_nan = Series([np.NaN] * 5)
# yields all NaN (0 variance)
d = Series([1] * 5)
x = d.rolling(window=5).kurt()
tm.assert_series_equal(all_nan, x)
# yields all NaN (window too small)
d = Series(np.random.randn(5))
x = d.rolling(window=3).kurt()
tm.assert_series_equal(all_nan, x)
# yields [NaN, NaN, NaN, 1.224307, 2.671499]
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
])
expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499])
x = d.rolling(window=4).kurt()
tm.assert_series_equal(expected, x)
示例7: test_count_level_series
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_count_level_series(self):
index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two',
'three', 'four']],
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]])
s = Series(np.random.randn(len(index)), index=index)
result = s.count(level=0)
expected = s.groupby(level=0).count()
tm.assert_series_equal(
result.astype('f8'), expected.reindex(result.index).fillna(0))
result = s.count(level=1)
expected = s.groupby(level=1).count()
tm.assert_series_equal(
result.astype('f8'), expected.reindex(result.index).fillna(0))
示例8: test_std_var_pass_ddof
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_std_var_pass_ddof(self):
index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile(
np.arange(10), 5)])
df = DataFrame(np.random.randn(len(index), 5), index=index)
for meth in ['var', 'std']:
ddof = 4
alt = lambda x: getattr(x, meth)(ddof=ddof)
result = getattr(df[0], meth)(level=0, ddof=ddof)
expected = df[0].groupby(level=0).agg(alt)
tm.assert_series_equal(result, expected)
result = getattr(df, meth)(level=0, ddof=ddof)
expected = df.groupby(level=0).agg(alt)
tm.assert_frame_equal(result, expected)
示例9: test_mixed_depth_pop
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_mixed_depth_pop(self):
arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
['', 'OD', 'OD', 'result1', 'result2', 'result1'],
['', 'wx', 'wy', '', '', '']]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(randn(4, 6), columns=index)
df1 = df.copy()
df2 = df.copy()
result = df1.pop('a')
expected = df2.pop(('a', '', ''))
tm.assert_series_equal(expected, result, check_names=False)
tm.assert_frame_equal(df1, df2)
assert result.name == 'a'
expected = df1['top']
df1 = df1.drop(['top'], axis=1)
result = df2.pop('top')
tm.assert_frame_equal(expected, result)
tm.assert_frame_equal(df1, df2)
示例10: test_sort_index_level_large_cardinality
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_sort_index_level_large_cardinality(self):
# #2684 (int64)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000), index=index, dtype=np.int64)
# it works!
result = df.sort_index(level=0)
assert result.index.lexsort_depth == 3
# #2684 (int32)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000), index=index, dtype=np.int32)
# it works!
result = df.sort_index(level=0)
assert (result.dtypes.values == df.dtypes.values).all()
assert result.index.lexsort_depth == 3
示例11: test_concat_dict
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_concat_dict(self):
frames = {'foo': DataFrame(np.random.randn(4, 3)),
'bar': DataFrame(np.random.randn(4, 3)),
'baz': DataFrame(np.random.randn(4, 3)),
'qux': DataFrame(np.random.randn(4, 3))}
sorted_keys = sorted(frames)
result = concat(frames)
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys)
tm.assert_frame_equal(result, expected)
result = concat(frames, axis=1)
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys,
axis=1)
tm.assert_frame_equal(result, expected)
keys = ['baz', 'foo', 'bar']
result = concat(frames, keys=keys)
expected = concat([frames[k] for k in keys], keys=keys)
tm.assert_frame_equal(result, expected)
示例12: test_crossed_dtypes_weird_corner
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_crossed_dtypes_weird_corner(self):
columns = ['A', 'B', 'C', 'D']
df1 = DataFrame({'A': np.array([1, 2, 3, 4], dtype='f8'),
'B': np.array([1, 2, 3, 4], dtype='i8'),
'C': np.array([1, 2, 3, 4], dtype='f8'),
'D': np.array([1, 2, 3, 4], dtype='i8')},
columns=columns)
df2 = DataFrame({'A': np.array([1, 2, 3, 4], dtype='i8'),
'B': np.array([1, 2, 3, 4], dtype='f8'),
'C': np.array([1, 2, 3, 4], dtype='i8'),
'D': np.array([1, 2, 3, 4], dtype='f8')},
columns=columns)
appended = df1.append(df2, ignore_index=True)
expected = DataFrame(np.concatenate([df1.values, df2.values], axis=0),
columns=columns)
tm.assert_frame_equal(appended, expected)
df = DataFrame(np.random.randn(1, 3), index=['a'])
df2 = DataFrame(np.random.randn(1, 4), index=['b'])
result = concat(
[df, df2], keys=['one', 'two'], names=['first', 'second'])
assert result.index.names == ('first', 'second')
示例13: setup_method
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def setup_method(self):
self.index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
self.to_join = DataFrame(np.random.randn(10, 3), index=self.index,
columns=['j_one', 'j_two', 'j_three'])
# a little relevant example with NAs
key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux',
'qux', 'snap']
key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two',
'three', 'one']
data = np.random.randn(len(key1))
self.data = DataFrame({'key1': key1, 'key2': key2,
'data': data})
示例14: setup_method
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def setup_method(self, method):
# aggregate multiple columns
self.df = DataFrame({'key1': get_test_data(),
'key2': get_test_data(),
'data1': np.random.randn(N),
'data2': np.random.randn(N)})
# exclude a couple keys for fun
self.df = self.df[self.df['key2'] > 1]
self.df2 = DataFrame({'key1': get_test_data(n=N // 5),
'key2': get_test_data(ngroups=NGROUPS // 2,
n=N // 5),
'value': np.random.randn(N // 5)})
index, data = tm.getMixedTypeDict()
self.target = DataFrame(data, index=index)
# Join on string value
self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']},
index=data['C'])
示例15: test_regularize_matrix
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import randn [as 別名]
def test_regularize_matrix():
"""Test whether function regularizes matrix correctly."""
# Generate test matrix
A = rnd.randn(3)
# Check for inappropriate input argument
with pytest.raises(ValueError):
regularize_matrix(A, a=-1.0)