當前位置: 首頁>>代碼示例>>Python>>正文


Python random.rand方法代碼示例

本文整理匯總了Python中numpy.random.rand方法的典型用法代碼示例。如果您正苦於以下問題:Python random.rand方法的具體用法?Python random.rand怎麽用?Python random.rand使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.random的用法示例。


在下文中一共展示了random.rand方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mi

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def mi(x, y, k=3, base=2):
  """Mutual information of x and y.
  x,y should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
  if x is a one-dimensional scalar and we have four samples.
  """
  assert len(x)==len(y), 'Lists should have same length.'
  assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
  intens = 1e-10 # Small noise to break degeneracy, see doc.
  x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
  y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
  points = zip2(x,y)
  # Find nearest neighbors in joint space, p=inf means max-norm.
  tree = ss.cKDTree(points)
  dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
  a = avgdigamma(x,dvec)
  b = avgdigamma(y,dvec)
  c = digamma(k)
  d = digamma(len(x))
  return (-a-b+c+d) / log(base) 
開發者ID:probcomp,項目名稱:cgpm,代碼行數:21,代碼來源:entropy_estimators.py

示例2: cmi

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def cmi(x, y, z, k=3, base=2):
  """Mutual information of x and y, conditioned on z
  x,y,z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
  if x is a one-dimensional scalar and we have four samples
  """
  assert len(x)==len(y), 'Lists should have same length.'
  assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
  intens = 1e-10 # Small noise to break degeneracy, see doc.
  x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
  y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
  z = [list(p + intens*nr.rand(len(z[0]))) for p in z]
  points = zip2(x,y,z)
  # Find nearest neighbors in joint space, p=inf means max-norm.
  tree = ss.cKDTree(points)
  dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
  a = avgdigamma(zip2(x,z), dvec)
  b = avgdigamma(zip2(y,z), dvec)
  c = avgdigamma(z,dvec)
  d = digamma(k)
  return (-a-b+c+d) / log(base) 
開發者ID:probcomp,項目名稱:cgpm,代碼行數:22,代碼來源:entropy_estimators.py

示例3: test_basic

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_basic(self):
        y1 = np.array([1, 2, 3])
        assert_(average(y1, axis=0) == 2.)
        y2 = np.array([1., 2., 3.])
        assert_(average(y2, axis=0) == 2.)
        y3 = [0., 0., 0.]
        assert_(average(y3, axis=0) == 0.)

        y4 = np.ones((4, 4))
        y4[0, 1] = 0
        y4[1, 0] = 2
        assert_almost_equal(y4.mean(0), average(y4, 0))
        assert_almost_equal(y4.mean(1), average(y4, 1))

        y5 = rand(5, 5)
        assert_almost_equal(y5.mean(0), average(y5, 0))
        assert_almost_equal(y5.mean(1), average(y5, 1)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_function_base.py

示例4: test_argequivalent

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_argequivalent(self):
        """ Test it translates from arg<func> to <func> """
        from numpy.random import rand
        a = rand(3, 4, 5)

        funcs = [
            (np.sort, np.argsort, dict()),
            (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
            (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
            (np.partition, np.argpartition, dict(kth=2)),
        ]

        for func, argfunc, kwargs in funcs:
            for axis in list(range(a.ndim)) + [None]:
                a_func = func(a, axis=axis, **kwargs)
                ai_func = argfunc(a, axis=axis, **kwargs)
                assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_shape_base.py

示例5: test_basic

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_basic(self):
        from numpy.random import rand

        a = rand(20, 10, 10, 1, 1)
        b = rand(20, 1, 10, 1, 20)
        c = rand(1, 1, 20, 10)
        assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
        assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
        assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))

        # Squeezing to 0-dim should still give an ndarray
        a = [[[1.5]]]
        res = np.squeeze(a)
        assert_equal(res, 1.5)
        assert_equal(res.ndim, 0)
        assert_equal(type(res), np.ndarray) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_shape_base.py

示例6: test_subplots_dup_columns

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_subplots_dup_columns(self):
        # GH 10962
        df = DataFrame(np.random.rand(5, 5), columns=list('aaaaa'))
        axes = df.plot(subplots=True)
        for ax in axes:
            self._check_legend_labels(ax, labels=['a'])
            assert len(ax.lines) == 1
        tm.close()

        axes = df.plot(subplots=True, secondary_y='a')
        for ax in axes:
            # (right) is only attached when subplots=False
            self._check_legend_labels(ax, labels=['a'])
            assert len(ax.lines) == 1
        tm.close()

        ax = df.plot(secondary_y='a')
        self._check_legend_labels(ax, labels=['a (right)'] * 5)
        assert len(ax.lines) == 0
        assert len(ax.right_ax.lines) == 5 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_frame.py

示例7: test_line_lim

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_line_lim(self):
        df = DataFrame(rand(6, 3), columns=['x', 'y', 'z'])
        ax = df.plot()
        xmin, xmax = ax.get_xlim()
        lines = ax.get_lines()
        assert xmin <= lines[0].get_data()[0][0]
        assert xmax >= lines[0].get_data()[0][-1]

        ax = df.plot(secondary_y=True)
        xmin, xmax = ax.get_xlim()
        lines = ax.get_lines()
        assert xmin <= lines[0].get_data()[0][0]
        assert xmax >= lines[0].get_data()[0][-1]

        axes = df.plot(secondary_y=True, subplots=True)
        self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
        for ax in axes:
            assert hasattr(ax, 'left_ax')
            assert not hasattr(ax, 'right_ax')
            xmin, xmax = ax.get_xlim()
            lines = ax.get_lines()
            assert xmin <= lines[0].get_data()[0][0]
            assert xmax >= lines[0].get_data()[0][-1] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_frame.py

示例8: test_area_lim

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_area_lim(self):
        df = DataFrame(rand(6, 4), columns=['x', 'y', 'z', 'four'])

        neg_df = -df
        for stacked in [True, False]:
            ax = _check_plot_works(df.plot.area, stacked=stacked)
            xmin, xmax = ax.get_xlim()
            ymin, ymax = ax.get_ylim()
            lines = ax.get_lines()
            assert xmin <= lines[0].get_data()[0][0]
            assert xmax >= lines[0].get_data()[0][-1]
            assert ymin == 0

            ax = _check_plot_works(neg_df.plot.area, stacked=stacked)
            ymin, ymax = ax.get_ylim()
            assert ymax == 0 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_frame.py

示例9: test_kde_colors

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_kde_colors(self):
        _skip_if_no_scipy_gaussian_kde()

        from matplotlib import cm

        custom_colors = 'rgcby'
        df = DataFrame(rand(5, 5))

        ax = df.plot.kde(color=custom_colors)
        self._check_colors(ax.get_lines(), linecolors=custom_colors)
        tm.close()

        ax = df.plot.kde(colormap='jet')
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors)
        tm.close()

        ax = df.plot.kde(colormap=cm.jet)
        rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
        self._check_colors(ax.get_lines(), linecolors=rgba_colors) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_frame.py

示例10: test_partially_invalid_plot_data

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_frame.py

示例11: test_pie_df_nan

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_pie_df_nan(self):
        df = DataFrame(np.random.rand(4, 4))
        for i in range(4):
            df.iloc[i, i] = np.nan
        fig, axes = self.plt.subplots(ncols=4)
        df.plot.pie(subplots=True, ax=axes, legend=True)

        base_expected = ['0', '1', '2', '3']
        for i, ax in enumerate(axes):
            expected = list(base_expected)  # force copy
            expected[i] = ''
            result = [x.get_text() for x in ax.texts]
            assert result == expected
            # legend labels
            # NaN's not included in legend with subplots
            # see https://github.com/pandas-dev/pandas/issues/8390
            assert ([x.get_text() for x in ax.get_legend().get_texts()] ==
                    base_expected[:i] + base_expected[i + 1:]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_frame.py

示例12: test_errorbar_asymmetrical

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_errorbar_asymmetrical(self):

        np.random.seed(0)
        err = np.random.rand(3, 2, 5)

        # each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]...
        df = DataFrame(np.arange(15).reshape(3, 5)).T

        ax = df.plot(yerr=err, xerr=err / 2)

        yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1]
        expected_0_0 = err[0, :, 0] * np.array([-1, 1])
        tm.assert_almost_equal(yerr_0_0, expected_0_0)

        with pytest.raises(ValueError):
            df.plot(yerr=err.T)

        tm.close()

    # This XPASSES when tested with mpl == 3.0.1 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_frame.py

示例13: test_frame_negate

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_frame_negate(self):
        expr = self.ex('-')

        # float
        lhs = DataFrame(randn(5, 2))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # int
        lhs = DataFrame(randint(5, size=(5, 2)))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = DataFrame(rand(5, 2) > 0.5)
        if self.engine == 'numexpr':
            with pytest.raises(NotImplementedError):
                result = pd.eval(expr, engine=self.engine, parser=self.parser)
        else:
            expect = -lhs
            result = pd.eval(expr, engine=self.engine, parser=self.parser)
            assert_frame_equal(expect, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_eval.py

示例14: test_series_negate

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_series_negate(self):
        expr = self.ex('-')

        # float
        lhs = Series(randn(5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # int
        lhs = Series(randint(5, size=5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = Series(rand(5) > 0.5)
        if self.engine == 'numexpr':
            with pytest.raises(NotImplementedError):
                result = pd.eval(expr, engine=self.engine, parser=self.parser)
        else:
            expect = -lhs
            result = pd.eval(expr, engine=self.engine, parser=self.parser)
            assert_series_equal(expect, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_eval.py

示例15: test_frame_pos

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import rand [as 別名]
def test_frame_pos(self):
        expr = self.ex('+')

        # float
        lhs = DataFrame(randn(5, 2))
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # int
        lhs = DataFrame(randint(5, size=(5, 2)))
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = DataFrame(rand(5, 2) > 0.5)
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_eval.py


注:本文中的numpy.random.rand方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。