本文整理匯總了Python中numpy.random方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.random方法的具體用法?Python numpy.random怎麽用?Python numpy.random使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.random方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: partial_fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def partial_fit(self, X, y, classes=None):
if self.partial_method == "gamma":
w_all = -np.log(self
.random_state
.random(size=(X.shape[0], self.nsamples))
.clip(min=1e-12, max=None))
appear_times = None
rng = None
elif self.partial_method == "poisson":
w_all = None
appear_times = self.random_state.poisson(1, size = (X.shape[0], self.nsamples))
rng = np.arange(X.shape[0])
else:
raise ValueError(_unexpected_err_msg)
Parallel(n_jobs=self.njobs, verbose=0, require="sharedmem")\
(delayed(self._partial_fit_single)\
(sample, w_all, appear_times, rng, X, y) \
for sample in range(self.nsamples))
示例2: main
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def main(env_id, policy_file, record, stochastic, extra_kwargs):
import gym
from gym import wrappers
import tensorflow as tf
from es_distributed.policies import MujocoPolicy
import numpy as np
env = gym.make(env_id)
if record:
import uuid
env = wrappers.Monitor(env, '/tmp/' + str(uuid.uuid4()), force=True)
if extra_kwargs:
import json
extra_kwargs = json.loads(extra_kwargs)
with tf.Session():
pi = MujocoPolicy.Load(policy_file, extra_kwargs=extra_kwargs)
while True:
rews, t = pi.rollout(env, render=True, random_stream=np.random if stochastic else None)
print('return={:.4f} len={}'.format(rews.sum(), t))
if record:
env.close()
return
示例3: elastic_transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
"""Elastic deformation of image as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
assert image.ndim == 3
shape = image.shape[:2]
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
result = np.empty_like(image)
for i in range(image.shape[2]):
result[:, :, i] = map_coordinates(
image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
return result
示例4: test_random_state
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def test_random_state():
import numpy.random as npr
# Check with seed
state = com.random_state(5)
assert state.uniform() == npr.RandomState(5).uniform()
# Check with random state object
state2 = npr.RandomState(10)
assert com.random_state(state2).uniform() == npr.RandomState(10).uniform()
# check with no arg random state
assert com.random_state() is np.random
# Error for floats or strings
with pytest.raises(ValueError):
com.random_state('test')
with pytest.raises(ValueError):
com.random_state(5.5)
示例5: _create_missing_idx
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def _create_missing_idx(nrows, ncols, density, random_state=None):
if random_state is None:
random_state = np.random
else:
random_state = np.random.RandomState(random_state)
# below is cribbed from scipy.sparse
size = int(np.round((1 - density) * nrows * ncols))
# generate a few more to ensure unique values
min_rows = 5
fac = 1.02
extra_size = min(size + min_rows, fac * size)
def _gen_unique_rand(rng, _extra_size):
ind = rng.rand(int(_extra_size))
return np.unique(np.floor(ind * nrows * ncols))[:size]
ind = _gen_unique_rand(random_state, extra_size)
while ind.size < size:
extra_size *= 1.05
ind = _gen_unique_rand(random_state, extra_size)
j = np.floor(ind * 1. / nrows).astype(int)
i = (ind - j * nrows).astype(int)
return i.tolist(), j.tolist()
示例6: _check_random_state
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def _check_random_state(seed):
"""
Turn seed into a np.random.RandomState instance (took for sklearn)
Parameters
----------
seed : None | int | instance of RandomState
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with it.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
示例7: check_random_state
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def check_random_state(seed):
"""
Turn seed into a mt.random.RandomState instance
:param seed:
If seed is None, return the RandomState singleton used by mt.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
:return:
"""
from . import random as mtrand
from numpy import random as np_mtrand
if seed is None or seed is mtrand or seed is np_mtrand:
return mtrand._random_state
if isinstance(seed, (Integral, np.integer)):
return mtrand.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return mtrand.RandomState.from_numpy(seed)
if isinstance(seed, mtrand.RandomState):
return seed
raise ValueError('%r cannot be used to seed a mt.random.RandomState'
' instance' % seed)
示例8: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def __init__(self, image_folder, max_images=False, image_size=(512, 512), add_random_masks=False):
super(ImageInpaintingData, self).__init__()
if isinstance(image_folder, str):
self.images = glob.glob(os.path.join(image_folder, "clean/*"))
else:
self.images = list(chain.from_iterable([glob.glob(os.path.join(i, "clean/*")) for i in image_folder]))
assert len(self.images) > 0
if max_images:
self.images = random.choices(self.images, k=max_images)
print(f"Find {len(self.images)} images.")
self.img_size = image_size
self.transformer = Compose([RandomGrayscale(p=0.4),
# ColorJitter(brightness=0.2, contrast=0.2, saturation=0, hue=0),
ToTensor(),
# Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.add_random_masks = add_random_masks
示例9: random_masks
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def random_masks(pil_img, size=512, offset=10):
draw = ImageDraw.Draw(pil_img)
# draw liens
# can't use np.random because its not forkable under PyTorch's dataloader with multiprocessing
reps = random.randint(1, 5)
for i in range(reps):
cords = np.array(random.choices(range(offset, size), k=4)).reshape(2, 2)
cords[1] = np.clip(cords[1], a_min=cords[0] - 75, a_max=cords[0] + 75)
width = random.randint(15, 20)
draw.line(cords.reshape(-1).tolist(), width=width, fill=255)
# # draw circles
reps = random.randint(1, 5)
for i in range(reps):
cords = np.array(random.choices(range(offset, size - offset), k=2))
cords.sort()
ex = np.array(random.choices(range(20, 70), k=2)) + cords
ex = np.clip(ex, a_min=offset, a_max=size - offset)
draw.ellipse(np.concatenate([cords, ex]).tolist(), fill=255)
return pil_img
示例10: repair
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def repair(self, x, rnd=rand):
r"""Repair solution and put the solution in the random position inside of the bounds of problem.
Arguments:
x (numpy.ndarray): Solution to check and repair if needed.
rnd (mtrand.RandomState): Random number generator.
Returns:
numpy.ndarray: Fixed solution.
See Also:
* :func:`NiaPy.util.limitRepair`
* :func:`NiaPy.util.limitInversRepair`
* :func:`NiaPy.util.wangRepair`
* :func:`NiaPy.util.randRepair`
* :func:`NiaPy.util.reflectRepair`
"""
return self.frepair(x, self.Lower, self.Upper, rnd=rnd)
示例11: Neighborhood
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def Neighborhood(x, delta, task, rnd=rand):
r"""Get neighbours of point.
Args:
x numpy.ndarray: Point.
delta (float): Standard deviation.
task (Task): Optimization task.
rnd (Optional[mtrand.RandomState]): Random generator.
Returns:
Tuple[numpy.ndarray, float]:
1. New solution.
2. New solutions function/fitness value.
"""
X = x + rnd.normal(0, delta, task.D)
X = task.repair(X, rnd)
Xfit = task.eval(X)
return X, Xfit
示例12: Elitism
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def Elitism(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand):
r"""Select the best of all three strategies.
Args:
x (numpy.ndarray): individual position.
xpb (numpy.ndarray): individuals best position.
xb (numpy.ndarray): current best position.
xr (numpy.ndarray): random individual.
MP_c (float): Fickleness index value.
MP_s (float): External irregularity index value.
MP_p (float): Internal irregularity index value.
F (float): scale factor.
CR (float): crossover factor.
task (Task): optimization task.
rnd (mtrand.randomstate): random number generator.
Returns:
Tuple[numpy.ndarray, float]:
1. New position of individual
2. New positions fitness/function value
"""
xn = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)]
xn_f = apply_along_axis(task.eval, 1, xn)
ib = argmin(xn_f)
return xn[ib], xn_f[ib]
示例13: Sequential
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def Sequential(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand):
r"""Sequentialy combines all three strategies.
Args:
x (numpy.ndarray): individual position.
xpb (numpy.ndarray): individuals best position.
xb (numpy.ndarray): current best position.
xr (numpy.ndarray): random individual.
MP_c (float): Fickleness index value.
MP_s (float): External irregularity index value.
MP_p (float): Internal irregularity index value.
F (float): scale factor.
CR (float): crossover factor.
task (Task): optimization task.
rnd (mtrand.randomstate): random number generator.
Returns:
tuple[numpy.ndarray, float]:
1. new position
2. new positions function/fitness value
"""
xn = task.repair(MP_S(MP_P(MP_C(x, F, CR, MP_c, rnd), xpb, CR, MP_p, rnd), xr, xb, CR, MP_s, rnd), rnd=rnd)
return xn, task.eval(xn)
示例14: Crossover
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def Crossover(x, xpb, xb, xr, MP_c, MP_s, MP_p, F, CR, task, rnd=rand):
r"""Create a crossover over all three strategies.
Args:
x (numpy.ndarray): individual position.
xpb (numpy.ndarray): individuals best position.
xb (numpy.ndarray): current best position.
xr (numpy.ndarray): random individual.
MP_c (float): Fickleness index value.
MP_s (float): External irregularity index value.
MP_p (float): Internal irregularity index value.
F (float): scale factor.
CR (float): crossover factor.
task (Task): optimization task.
rnd (mtrand.randomstate): random number generator.
Returns:
Tuple[numpy.ndarray, float]:
1. new position
2. new positions function/fitness value
"""
xns = [task.repair(MP_C(x, F, CR, MP_c, rnd), rnd=rnd), task.repair(MP_S(x, xr, xb, CR, MP_s, rnd), rnd=rnd), task.repair(MP_P(x, xpb, CR, MP_p, rnd), rnd=rnd)]
x = asarray([xns[rnd.randint(len(xns))][i] if rnd.rand() < CR else x[i] for i in range(len(x))])
return x, task.eval(x)
示例15: MP_C
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import random [as 別名]
def MP_C(x, F, CR, MP, rnd=rand):
r"""Get bew position based on fickleness.
Args:
x (numpy.ndarray): Current individuals position.
F (float): Scale factor.
CR (float): Crossover probability.
MP (float): Fickleness index value
rnd (mtrand.RandomState): Random number generator
Returns:
numpy.ndarray: New position
"""
if MP < 0.5:
b = sort(rnd.choice(len(x), 2, replace=False))
x[b[0]:b[1]] = x[b[0]:b[1]] + F * rnd.normal(0, 1, b[1] - b[0])
return x
return asarray([x[i] + F * rnd.normal(0, 1) if rnd.rand() < CR else x[i] for i in range(len(x))])