本文整理匯總了Python中numpy.random.gamma方法的典型用法代碼示例。如果您正苦於以下問題:Python random.gamma方法的具體用法?Python random.gamma怎麽用?Python random.gamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.random
的用法示例。
在下文中一共展示了random.gamma方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rand_mask
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def rand_mask(im_size):
mask = np.zeros(shape=(im_size, im_size), dtype=np.uint8);
cx = (im_size - 1) / 2.0;
cy = (im_size - 1) / 2.0;
a = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
b = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
ratio = float(max(a, b)) / min(a, b);
mask = add_ellipse(mask, cx, cy, uniform() * math.pi, a, b);
for i in range(np.random.randint(2, 5)):
x = cx;
y = cy;
while ((x - cx)**2 + (y - cy)**2)**0.5 < im_size * 0.3:
x = np.random.randint(0, im_size);
y = np.random.randint(0, im_size);
a = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
b = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
mask = add_ellipse(mask, x, y, uniform() * math.pi, a, b);
return (mask, ratio);
示例2: rand_mask
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def rand_mask(im_size):
mask = np.zeros(shape=(im_size, im_size), dtype=np.uint8);
cx = (im_size - 1) / 2.0;
cy = (im_size - 1) / 2.0;
a = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
b = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
ratio = float(max(a, b)) / min(a, b);
mask = add_ellipse(mask, cx, cy, uniform() * math.pi, a, b);
for i in range(np.random.randint(0, 4)):
x = cx;
y = cy;
while ((x - cx)**2 + (y - cy)**2)**0.5 < im_size * 0.3:
x = np.random.randint(0, im_size);
y = np.random.randint(0, im_size);
a = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
b = im_size * (gamma(2.2, 0.6) / 10.0 + 0.04);
mask = add_ellipse(mask, x, y, uniform() * math.pi, a, b);
return (mask, ratio);
示例3: _init_component
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def _init_component(self, m, dim):
assert self.mode_dims[m] == dim
K = self.n_components
s = self.smoothness
if not self.debug:
gamma_DK = s * rn.gamma(s, 1. / s, size=(dim, K))
delta_DK = s * rn.gamma(s, 1. / s, size=(dim, K))
else:
gamma_DK = s * np.ones((dim, K))
delta_DK = s * np.ones((dim, K))
self.gamma_DK_M[m] = gamma_DK
self.delta_DK_M[m] = delta_DK
self.E_DK_M[m] = gamma_DK / delta_DK
self.sumE_MK[m, :] = self.E_DK_M[m].sum(axis=0)
self.G_DK_M[m] = np.exp(sp.psi(gamma_DK) - np.log(delta_DK))
if m == 0 or not self.debug:
self.beta_M[m] = 1. / self.E_DK_M[m].mean()
示例4: generate
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def generate(shp=(30, 30, 20, 10), K=5, alpha=0.1, beta=0.1):
"""Generate a count tensor from the BPTF model.
PARAMS:
shp -- (tuple) shape of the generated count tensor
K -- (int) number of latent components
alpha -- (float) shape parameter of gamma prior over factors
beta -- (float) rate parameter of gamma prior over factors
RETURNS:
Mu -- (np.ndarray) true Poisson rates
Y -- (np.ndarray) generated count tensor
"""
Theta_DK_M = [rn.gamma(alpha, 1./beta, size=(D, K)) for D in shp]
Mu = parafac(Theta_DK_M)
assert Mu.shape == shp
Y = rn.poisson(Mu)
return Mu, Y
示例5: corrupt
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def corrupt(Y, p=0.05):
"""Corrupt a count tensor with anomalies.
The corruption noise model is:
corrupt(y) = y * g, where g ~ Gamma(10, 2)
PARAMS:
p -- (float) proportion of tensor entries to corrupt
RETURNS:
out -- (np.ndarray) corrupted count tensor
mask -- (np.ndarray) boolean array, same shape as count tensor
True means that entry was corrupted.
"""
out = Y.copy()
mask = (rn.random(size=out.shape) < p).astype(bool)
out[mask] = rn.poisson(out[mask] * rn.gamma(10., 2., size=out[mask].shape))
return out, mask
示例6: _create_prices
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def _create_prices(t):
last_average = 100 if t==0 else source.data['average'][-1]
returns = asarray(lognormal(mean.value, stddev.value, 1))
average = last_average * cumprod(returns)
high = average * exp(abs(gamma(1, 0.03, size=1)))
low = average / exp(abs(gamma(1, 0.03, size=1)))
delta = high - low
open = low + delta * uniform(0.05, 0.95, size=1)
close = low + delta * uniform(0.05, 0.95, size=1)
return open[0], high[0], low[0], close[0], average[0]
示例7: _create_prices
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def _create_prices(t):
global last_average
returns = asarray(lognormal(mean, stddev, 1))
average = last_average * cumprod(returns)
last_average = average
high = average * exp(abs(gamma(1, 0.03, size=1)))
low = average / exp(abs(gamma(1, 0.03, size=1)))
delta = high - low
open = low + delta * uniform(0.05, 0.95, size=1)
close = low + delta * uniform(0.05, 0.95, size=1)
return open[0], high[0], low[0], close[0], average[0]
示例8: __init__
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def __init__(self, *args, **kwargs):
"""
:name: Name of the parameter
:shape: The shape of the gamma distribution.
:scale: The scale of the gamme distribution
:step: (optional) number for step size required for some algorithms,
eg. mcmc need a parameter of the variance for the next step
default is median of rndfunc(*rndargs, size=1000)
:optguess: (optional) number for start point of parameter
default is quantile(0.5) - quantile(0.4) of
rndfunc(*rndargs, size=1000)
"""
super(Gamma, self).__init__(rnd.gamma, 'Gamma', *args, **kwargs)
示例9: rvs
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def rvs(self, size=None):
return random.gamma(self.a, scale=self.scale, size=size)
示例10: logpdf
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def logpdf(self, x):
return stats.gamma.logpdf(x, self.a, scale=self.scale)
示例11: ppf
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def ppf(self, u):
return stats.gamma.ppf(u, self.a, scale=self.scale)
示例12: detect
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def detect(Y, K=5, alpha=0.1, thresh=1e-5):
"""Detect anomalies using BPTF.
This method fits BPTF to Y and obtains Mu, which is the model's
reconstruction of Y (computed from the inferred latent factors).
Anomalies are then all entries of Y whose probability given Mu
is less than a given threshold.
If P(y | mu) < thresh ==> y is anomaly!
Here P(y | mu) = Pois(y; mu), the PMF of the Poisson distribution.
PARAMS:
Y -- (np.ndarray) data count tensor
K -- (int) number of latent components
alpha -- (float) shape parameter of gamma prior over factors
thresh -- (float) anomaly threshold (between 0 and 1).
"""
bptf = BPTF(n_modes=Y.ndim,
n_components=K,
max_iter=100,
tol=1e-4,
smoothness=100,
verbose=False,
alpha=alpha,
debug=False)
bptf.fit(Y)
Mu = bptf.reconstruct()
return st.poisson.pmf(Y, Mu) < thresh
示例13: beta_geometric_beta_binom_model
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import gamma [as 別名]
def beta_geometric_beta_binom_model(N, alpha, beta, gamma, delta, size=1):
"""
Generate artificial data according to the Beta-Geometric/Beta-Binomial
Model.
You may wonder why we can have frequency = n_periods, when frequency excludes their
first order. When a customer purchases something, they are born, _and in the next
period_ we start asking questions about their alive-ness. So really they customer has
bought frequency + 1, and been observed for n_periods + 1
Parameters
----------
N: array_like
Number of transaction opportunities for new customers.
alpha, beta, gamma, delta: float
Parameters in the model. See [1]_
size: int, optional
The number of customers to generate
Returns
-------
DataFrame
with index as customer_ids and the following columns:
'frequency', 'recency', 'n_periods', 'lambda', 'p', 'alive', 'customer_id'
References
----------
.. [1] Fader, Peter S., Bruce G.S. Hardie, and Jen Shang (2010),
"Customer-Base Analysis in a Discrete-Time Noncontractual Setting,"
Marketing Science, 29 (6), 1086-1108.
"""
if type(N) in [float, int, np.int64]:
N = N * np.ones(size)
else:
N = np.asarray(N)
probability_of_post_purchase_death = random.beta(a=alpha, b=beta, size=size)
thetas = random.beta(a=gamma, b=delta, size=size)
columns = ["frequency", "recency", "n_periods", "p", "theta", "alive", "customer_id"]
df = pd.DataFrame(np.zeros((size, len(columns))), columns=columns)
for i in range(size):
p = probability_of_post_purchase_death[i]
theta = thetas[i]
# hacky until I can find something better
current_t = 0
alive = True
times = []
while current_t < N[i] and alive:
alive = random.binomial(1, theta) == 0
if alive and random.binomial(1, p) == 1:
times.append(current_t)
current_t += 1
# adding in final death opportunity to agree with [1]
if alive:
alive = random.binomial(1, theta) == 0
df.iloc[i] = len(times), times[-1] + 1 if len(times) != 0 else 0, N[i], p, theta, alive, i
return df