本文整理匯總了Python中numpy.random.choice方法的典型用法代碼示例。如果您正苦於以下問題:Python random.choice方法的具體用法?Python random.choice怎麽用?Python random.choice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.random
的用法示例。
在下文中一共展示了random.choice方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: start_new_particles
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def start_new_particles(self):
"""
Start some new particles from the emitters. We roll the dice
starts_at_once times, seeing if we can start each particle based
on starts_prob. If we start, the particle gets a color form
the palette and a velocity from the vel list.
"""
for e_pos, e_dir, e_vel, e_range, e_color, e_pal in self.emitters:
for roll in range(self.starts_at_once):
if random.random() < self.starts_prob: # Start one?
p_vel = self.vel[random.choice(len(self.vel))]
if e_dir < 0 or e_dir == 0 and random.random() > 0.5:
p_vel = -p_vel
self.particles.append((
p_vel, # Velocity
e_pos, # Position
int(e_range // abs(p_vel)), # steps to live
e_pal[
random.choice(len(e_pal))], # Color
255)) # Brightness
示例2: select_one
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def select_one(self, population: Population) -> Individual:
"""Return single individual from population.
Parameters
----------
population
A Population of Individuals.
Returns
-------
Individual
The selected Individual.
"""
tournament = choice(population, self.tournament_size, replace=False)
return min(tournament, key=attrgetter('total_error'))
示例3: _select_with_stream
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def _select_with_stream(self, population: Population, cases: CaseStream) -> Individual:
candidates = one_individual_per_error_vector(population)
ep = self.epsilon
if isinstance(ep, bool) and ep:
ep = self._epsilon_from_mad(population.all_error_vectors())
for case in cases:
if len(candidates) <= 1:
break
errors_this_case = [i.error_vector[case] for i in candidates]
best_val_for_case = min(errors_this_case)
max_error = best_val_for_case
if isinstance(ep, np.ndarray):
max_error += ep[case]
elif isinstance(ep, (float, int, np.int64, np.float64)):
max_error += ep
candidates = [i for i in candidates if i.error_vector[case] <= max_error]
return choice(candidates)
示例4: TwoPointCrossover
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def TwoPointCrossover(pop, ic, cr, rnd=rand):
r"""Two point crossover method.
Args:
pop (numpy.ndarray[Individual]): Current population.
ic (int): Index of current individual.
cr (float): Crossover probability.
rnd (mtrand.RandomState): Random generator.
Returns:
numpy.ndarray: New genotype.
"""
io = ic
while io != ic: io = rnd.randint(len(pop))
r = sort(rnd.choice(len(pop[ic]), 2))
x = pop[ic].x
x[r[0]:r[1]] = pop[io].x[r[0]:r[1]]
return asarray(x)
示例5: MultiPointCrossover
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def MultiPointCrossover(pop, ic, n, rnd=rand):
r"""Multi point crossover method.
Args:
pop (numpy.ndarray[Individual]): Current population.
ic (int): Index of current individual.
n (flat): TODO.
rnd (mtrand.RandomState): Random generator.
Returns:
numpy.ndarray: New genotype.
"""
io = ic
while io != ic: io = rnd.randint(len(pop))
r, x = sort(rnd.choice(len(pop[ic]), 2 * n)), pop[ic].x
for i in range(n): x[r[2 * i]:r[2 * i + 1]] = pop[io].x[r[2 * i]:r[2 * i + 1]]
return asarray(x)
示例6: sample
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def sample(self, duration: float) -> VideoSegment:
"""
Randomly samples a video segment with the specified duration.
Parameters
----------
duration
duration of the video segment to sample
"""
if self.time_boundaries:
# Select a random time boundary to sample from, weighted by duration
time_ranges = [TimeRange(*boundary) for boundary in self.time_boundaries]
time_ranges = [time_range for time_range in time_ranges if time_range.duration >= duration]
total_duration = sum([time_range.duration for time_range in time_ranges])
time_range_weights = [time_range.duration / total_duration for time_range in time_ranges]
time_range_to_sample = time_ranges[choice(len(time_ranges), p=time_range_weights)]
else:
time_range_to_sample = TimeRange(0, self.segment.duration)
start_time = random.uniform(time_range_to_sample.start, time_range_to_sample.end - duration)
sampled_clip = self.segment.subclip(start_time, start_time + duration)
return sampled_clip
示例7: sample
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def sample(self, duration: float) -> Segment:
"""
Randomly samples a segment with the specified duration
Parameters
----------
duration
duration of the sample
Returns
-------
A randomly sampled segment with the specified duration
"""
selected_source = choice(self.sources, p=self.sources.normalized_weights)
sample = selected_source.sample(duration)
return sample
示例8: corrupt
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def corrupt(self, src, rel, dst, keep_truth=True):
n = len(src)
prob = self.bern_prob[rel]
selection = torch.bernoulli(prob).numpy().astype('bool')
src_out = np.tile(src.numpy(), (self.n_sample, 1)).transpose()
dst_out = np.tile(dst.numpy(), (self.n_sample, 1)).transpose()
rel_out = rel.unsqueeze(1).expand(n, self.n_sample)
if keep_truth:
ent_random = choice(self.n_ent, (n, self.n_sample - 1))
src_out[selection, 1:] = ent_random[selection]
dst_out[~selection, 1:] = ent_random[~selection]
else:
ent_random = choice(self.n_ent, (n, self.n_sample))
src_out[selection, :] = ent_random[selection]
dst_out[~selection, :] = ent_random[~selection]
return torch.from_numpy(src_out), rel_out, torch.from_numpy(dst_out)
示例9: _get_feature_scale
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def _get_feature_scale(self, num_images=100):
TARGET_NORM = 20.0 # Magic value from traditional R-CNN
_t = Timer()
roidb = self.imdb.roidb
total_norm = 0.0
count = 0.0
inds = npr.choice(xrange(self.imdb.num_images), size=num_images,
replace=False)
for i_, i in enumerate(inds):
im = cv2.imread(self.imdb.image_path_at(i))
if roidb[i]['flipped']:
im = im[:, ::-1, :]
_t.tic()
scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
_t.toc()
feat = self.net.blobs[self.layer].data
total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
count += feat.shape[0]
print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images,
total_norm / count))
return TARGET_NORM * 1.0 / (total_norm / count)
示例10: generate_map
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def generate_map(map_size, num_cells_togo, save_boundary=True, min_blocks = 10):
maze=generate_maze(map_size)
if save_boundary:
maze = maze[1:-1, 1:-1]
map_size -= 2
index_ones = np.arange(map_size*map_size)[maze.flatten()==1]
reserve = min(index_ones.size, min_blocks)
num_cells_togo = min(num_cells_togo, index_ones.size-reserve)
if num_cells_togo > 0:
blocks_remove=npr.choice(index_ones, num_cells_togo, replace = False)
maze[blocks_remove//map_size, blocks_remove%map_size] = 0
if save_boundary:
map_size+=2
maze2 = np.ones((map_size,map_size))
maze2[1:-1,1:-1] = maze
return maze2
else:
return maze
示例11: proposal_top_layer
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def proposal_top_layer(rpn_cls_prob, rpn_bbox_pred, im_info, _feat_stride, anchors, num_anchors):
"""A layer that just selects the top region proposals
without using non-maximal suppression,
For details please see the technical report
"""
rpn_top_n = cfg.TEST.RPN_TOP_N
scores = rpn_cls_prob[:, :, :, num_anchors:]
rpn_bbox_pred = rpn_bbox_pred.view(-1, 4)
scores = scores.contiguous().view(-1, 1)
length = scores.size(0)
if length < rpn_top_n:
# Random selection, maybe unnecessary and loses good proposals
# But such case rarely happens
top_inds = torch.from_numpy(npr.choice(length, size=rpn_top_n, replace=True)).long().cuda()
else:
top_inds = scores.sort(0, descending=True)[1]
top_inds = top_inds[:rpn_top_n]
top_inds = top_inds.view(rpn_top_n)
# Do the selection here
anchors = anchors[top_inds, :].contiguous()
rpn_bbox_pred = rpn_bbox_pred[top_inds, :].contiguous()
scores = scores[top_inds].contiguous()
# Convert anchors into proposals via bbox transformations
proposals = bbox_transform_inv(anchors, rpn_bbox_pred)
# Clip predicted boxes to image
proposals = clip_boxes(proposals, im_info[:2])
# Output rois blob
# Our RPN implementation only supports a single input image, so all
# batch inds are 0
batch_inds = proposals.data.new(proposals.size(0), 1).zero_()
blob = torch.cat([batch_inds, proposals], 1)
return blob, scores
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:41,代碼來源:proposal_top_layer.py
示例12: move_particles
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def move_particles(self):
"""
Move each particle by it's velocity, adjusting brightness as we go.
Particles that have moved beyond their range (steps to live), and
those that move off the ends and are not wrapped get sacked.
Particles can stay between _end and up to but not including _end+1
No particles can exitst before start without wrapping.
"""
moved_particles = []
for vel, pos, stl, color, bright in self.particles:
stl -= 1 # steps to live
if stl > 0:
pos = pos + vel
if vel > 0:
if pos >= (self._end + 1):
if self.wrap:
pos = pos - (self._end + 1) + self._start
else:
continue # Sacked
else:
if pos < self._start:
if self.wrap:
pos = pos + self._end + 1 + self._start
else:
continue # Sacked
if random.random() < self.step_flare_prob:
bright = 255
else:
bright = bright + random.choice(self.bd)
if bright > 255:
bright = 255
# Zombie particles with bright<=0 walk, don't -overflow
if bright < -10000:
bright = -10000
moved_particles.append((vel, pos, stl, color, bright))
self.particles = moved_particles
示例13: fill_up_genomes
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def fill_up_genomes(otu_genome_map, unmatched_otus, per_rank_map, tax_profile, debug):
genomes = {}
added_genomes = set()
for rank in per_rank_map:
for taxid in per_rank_map[rank]:
genomes[taxid] = []
for path, genome_id in per_rank_map[rank][taxid]:
if path not in added_genomes:
genomes[taxid].append((path, genome_id))
added_genomes.add(path)
otu_indices = np_rand.choice(len(unmatched_otus),len(unmatched_otus),replace=False)
i = 0
set_all = False
for tax_id in genomes:
for path, genome_id in genomes[tax_id]:
curr_otu = unmatched_otus[otu_indices[i]] #so we choose a random genome
lineage, abundances = tax_profile[curr_otu]
lin = transform_lineage(lineage, RANKS, MAX_RANK)
otu_genome_map[curr_otu] = (tax_id, genome_id, path, abundances)
if debug:
_log.warning("Filling up OTU %s (mapped tax id: %s) to genome with tax id %s" % (curr_otu, lin[0], tax_id))
i += 1
if (i >= len(unmatched_otus) or i >= len(added_genomes)):
set_all = True
break
if (set_all):
break
return otu_genome_map
示例14: _compute_vectorized
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def _compute_vectorized(self, args, y):
random_values = choice(self.a, args.index.shape[0])
random_values = random_values.astype(self.dtype)
return random_values
示例15: random_value_selection
# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import choice [as 別名]
def random_value_selection(self):
"""
Select a random value from the domain of the variable of the
VariableComputation.
"""
value = random.choice(self.variable.domain)
self.value_selection(value)