當前位置: 首頁>>代碼示例>>Python>>正文


Python random.RandomState方法代碼示例

本文整理匯總了Python中numpy.random.RandomState方法的典型用法代碼示例。如果您正苦於以下問題:Python random.RandomState方法的具體用法?Python random.RandomState怎麽用?Python random.RandomState使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.random的用法示例。


在下文中一共展示了random.RandomState方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_function

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
            assert_array_almost_equal(out1, out2)
        else:
            assert_array_equal(out1, out2) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:23,代碼來源:test_random.py

示例2: test_group_var_generic_1d

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_group_var_generic_1d(self):
        prng = RandomState(1234)

        out = (np.nan * np.ones((5, 1))).astype(self.dtype)
        counts = np.zeros(5, dtype='int64')
        values = 10 * prng.rand(15, 1).astype(self.dtype)
        labels = np.tile(np.arange(5), (3, )).astype('int64')

        expected_out = (np.squeeze(values)
                        .reshape((5, 3), order='F')
                        .std(axis=1, ddof=1) ** 2)[:, np.newaxis]
        expected_counts = counts + 3

        self.algo(out, counts, values, labels)
        assert np.allclose(out, expected_out, self.rtol)
        tm.assert_numpy_array_equal(counts, expected_counts) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_algos.py

示例3: test_random_state

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_random_state():
    import numpy.random as npr
    # Check with seed
    state = com.random_state(5)
    assert state.uniform() == npr.RandomState(5).uniform()

    # Check with random state object
    state2 = npr.RandomState(10)
    assert com.random_state(state2).uniform() == npr.RandomState(10).uniform()

    # check with no arg random state
    assert com.random_state() is np.random

    # Error for floats or strings
    with pytest.raises(ValueError):
        com.random_state('test')

    with pytest.raises(ValueError):
        com.random_state(5.5) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_common.py

示例4: test_failprob_threshold_basic

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_failprob_threshold_basic():
    """Sanity check on failprob_threshold: Verify, for a relatively large failure
    probability, that the failure threshold it returns for a simple test
    statistic actually results in failures at approximately the right
    frequency.

    """
    prngstate = RandomState(0)

    def sample(n):
        return prngstate.normal(0, 1, n)

    target_prob = 1e-1
    test_sample_size = 6
    prob, thresh = failprob_threshold(
        sample(1000), test_sample_size, target_prob)
    samples = [all(v < thresh for v in sample(test_sample_size))
               for _ in xrange(int(100 / target_prob))]
    assert 50 < samples.count(True) < 200 
開發者ID:probcomp,項目名稱:bayeslite,代碼行數:21,代碼來源:test_threshold.py

示例5: compute_kullback_leibler_check_statistic

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def compute_kullback_leibler_check_statistic(n=100, prngstate=None):
    """Compute the lowest of the survival function and the CDF of the exact KL
    divergence KL(N(mu1,s1)||N(mu2,s2)) w.r.t. the sample distribution of the
    KL divergence drawn by computing log(P(x|N(mu1,s1)))-log(P(x|N(mu2,s2)))
    over a sample x~N(mu1,s1). If we are computing the KL divergence
    accurately, the exact value should fall squarely in the sample, and the
    tail probabilities should be relatively large.

    """
    if prngstate is None:
        raise TypeError('Must explicitly specify numpy.random.RandomState')
    mu1 = mu2 = 0
    s1 = 1
    s2 = 2
    exact = gaussian_kl_divergence(mu1, s1, mu2, s2)
    sample = prngstate.normal(mu1, s1, n)
    lpdf1 = gaussian_log_pdf(mu1, s1)
    lpdf2 = gaussian_log_pdf(mu2, s2)
    estimate, std = kl.kullback_leibler(sample, lpdf1, lpdf2)
    # This computes the minimum of the left and right tail probabilities of the
    # exact KL divergence vs a gaussian fit to the sample estimate. There is a
    # distinct negative skew to the samples used to compute `estimate`, so this
    # statistic is not uniform. Nonetheless, we do not expect it to get too
    # small.
    return erfc(abs(exact - estimate) / std) / 2 
開發者ID:probcomp,項目名稱:bayeslite,代碼行數:27,代碼來源:test_kl.py

示例6: generate_random_dataset

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def generate_random_dataset(dataset_size, sequence_avg_size):
    """
    Build a dummy data structure with random numbers similar to our
    usual datasets that is a list of pairs of sequences of numbers:
    [ ( [1, 2, 10, ...], [3, 5, 6, 7, ...]),
      ( [5, 3], [34, 23, 44, 1, ...] ),
      ... ]
    """
    random_generator = RandomState(42)

    dataset = []
    for i in range(0, dataset_size):
        item = []
        # Each item contains 2 sequences.
        for j in range(0, 2):
            sequence_length = random_generator.randint(sequence_avg_size - 5, sequence_avg_size + 5)
            # sequence_length = random_generator.randint(1, 5)
            sequence = random_generator.randint(0, 100, size=sequence_length)
            item.append(sequence)
        item = tuple(item)
        dataset.append(item)

    return dataset 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:25,代碼來源:training_chainer_test.py

示例7: defaultNumPyInit

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def defaultNumPyInit(task, NP, rnd=rand, **kwargs):
	r"""Initialize starting population that is represented with `numpy.ndarray` with shape `{NP, task.D}`.

	Args:
		task (Task): Optimization task.
		NP (int): Number of individuals in population.
		rnd (Optional[mtrand.RandomState]): Random number generator.
		kwargs (Dict[str, Any]): Additional arguments.

	Returns:
		Tuple[numpy.ndarray, numpy.ndarray[float]]:
			1. New population with shape `{NP, task.D}`.
			2. New population function/fitness values.
	"""
	pop = task.Lower + rnd.rand(NP, task.D) * task.bRange
	fpop = apply_along_axis(task.eval, 1, pop)
	return pop, fpop 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:19,代碼來源:algorithm.py

示例8: defaultIndividualInit

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def defaultIndividualInit(task, NP, rnd=rand, itype=None, **kwargs):
	r"""Initialize `NP` individuals of type `itype`.

	Args:
		task (Task): Optimization task.
		NP (int): Number of individuals in population.
		rnd (Optional[mtrand.RandomState]): Random number generator.
		itype (Optional[Individual]): Class of individual in population.
		kwargs (Dict[str, Any]): Additional arguments.

	Returns:
		Tuple[numpy.ndarray[Individual], numpy.ndarray[float]:
			1. Initialized individuals.
			2. Initialized individuals function/fitness values.
	"""
	pop = objects2array([itype(task=task, rnd=rnd, e=True) for _ in range(NP)])
	return pop, asarray([x.f for x in pop]) 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:19,代碼來源:algorithm.py

示例9: test_random_state

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_random_state():
    import numpy.random as npr
    # Check with seed
    state = com._random_state(5)
    assert state.uniform() == npr.RandomState(5).uniform()

    # Check with random state object
    state2 = npr.RandomState(10)
    assert (com._random_state(state2).uniform() ==
            npr.RandomState(10).uniform())

    # check with no arg random state
    assert com._random_state() is np.random

    # Error for floats or strings
    with pytest.raises(ValueError):
        com._random_state('test')

    with pytest.raises(ValueError):
        com._random_state(5.5) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_common.py

示例10: test_issue_30

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_issue_30():
    # From the issue:
    vec = np.array([33., 44., 58., 49., 46., 98., 97.])

    arm = AutoARIMA(out_of_sample_size=1, seasonal=False,
                    suppress_warnings=True)
    arm.fit(vec)

    # This is a way to force it:
    ARIMA(order=(0, 1, 0), out_of_sample_size=1).fit(vec)

    # Want to make sure it works with exog arrays as well
    exog = np.random.RandomState(1).rand(vec.shape[0], 2)
    auto_arima(vec, exogenous=exog, out_of_sample_size=1,
               seasonal=False,
               suppress_warnings=True)

    # This is a way to force it:
    ARIMA(order=(0, 1, 0), out_of_sample_size=1).fit(vec, exogenous=exog) 
開發者ID:alkaline-ml,項目名稱:pmdarima,代碼行數:21,代碼來源:test_arima.py

示例11: test_two_sample_conf_int

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_two_sample_conf_int():
    prng = RandomState(42)

    # Shift is -1
    x = np.array(range(5))
    y = np.array(range(1, 6))
    res = two_sample_conf_int(x, y, seed=prng)
    expected_ci = (-3.5, 1.0012461)
    assert_almost_equal(res, expected_ci)
    res = two_sample_conf_int(x, y, seed=prng, alternative="upper")
    expected_ci = (-5, 1)
    assert_almost_equal(res, expected_ci)
    res = two_sample_conf_int(x, y, seed=prng, alternative="lower")
    expected_ci = (-3, 5)
    assert_almost_equal(res, expected_ci)

    # Specify shift with a function pair
    shift = (lambda u, d: u + d, lambda u, d: u - d)
    res = two_sample_conf_int(x, y, seed=5, shift=shift)
    assert_almost_equal(res, (-3.5, 1))

    # Specify shift with a multiplicative pair
    shift = (lambda u, d: u * d, lambda u, d: u / d)
    res = two_sample_conf_int(x, y, seed=5, shift=shift)
    assert_almost_equal(res, (-1, -1)) 
開發者ID:statlab,項目名稱:permute,代碼行數:27,代碼來源:test_core.py

示例12: test_permute_incidence_fixed_sums

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_permute_incidence_fixed_sums():
    prng = RandomState(42)
    x0 = prng.randint(2, size=80).reshape((8, 10))
    x1 = permute_incidence_fixed_sums(x0)

    K = 5

    m = []
    for i in range(1000):
        x2 = permute_incidence_fixed_sums(x0, k=K)
        m.append(np.sum(x0 != x2))

    np.testing.assert_(max(m) <= K * 4,
                       "Too many swaps occurred")

    for axis in (0, 1):
        for test_arr in (x1, x2):
            np.testing.assert_array_equal(x0.sum(axis=axis),
                                          test_arr.sum(axis=axis)) 
開發者ID:statlab,項目名稱:permute,代碼行數:21,代碼來源:test_utils.py

示例13: test_npc

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def test_npc():
    prng = RandomState(55)
    pvalues = np.linspace(0.05, 0.9, num=5)
    distr = prng.uniform(low=0, high=10, size=500).reshape(100, 5)
    res = npc(pvalues, distr, "fisher", "greater", plus1=False)
    np.testing.assert_almost_equal(res, 0.33)
    res = npc(pvalues, distr, "fisher", "less", plus1=False)
    np.testing.assert_almost_equal(res, 0.33)
    res = npc(pvalues, distr, "fisher", "two-sided", plus1=False)
    np.testing.assert_almost_equal(res, 0.31)
    res = npc(pvalues, distr, "liptak", "greater", plus1=False)
    np.testing.assert_almost_equal(res, 0.35)
    res = npc(pvalues, distr, "tippett", "greater", plus1=False)
    np.testing.assert_almost_equal(res, 0.25)
    res = npc(pvalues, distr, "fisher",
              alternatives=np.array(["less", "greater", "less",
                                     "greater", "two-sided"]), plus1=False)
    np.testing.assert_almost_equal(res, 0.38) 
開發者ID:statlab,項目名稱:permute,代碼行數:20,代碼來源:test_npc.py

示例14: __call__

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def __call__(self, shape, dtype=None):

        if self.nb_filters is not None:
            kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters)
        else:
            kernel_shape = (int(self.input_dim), self.kernel_size[-1])

        fan_in, fan_out = initializers._compute_fans(
            tuple(self.kernel_size) + (self.input_dim, self.nb_filters)
        )

        if self.criterion == 'glorot':
            s = 1. / (fan_in + fan_out)
        elif self.criterion == 'he':
            s = 1. / fan_in
        else:
            raise ValueError('Invalid criterion: ' + self.criterion)
        rng = RandomState(self.seed)
        modulus = rng.rayleigh(scale=s, size=kernel_shape)
        phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape)
        weight_real = modulus * np.cos(phase)
        weight_imag = modulus * np.sin(phase)
        weight = np.concatenate([weight_real, weight_imag], axis=-1)

        return weight 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:27,代碼來源:init.py

示例15: list_random_circuits_onelen

# 需要導入模塊: from numpy import random [as 別名]
# 或者: from numpy.random import RandomState [as 別名]
def list_random_circuits_onelen(opLabels, length, count, seed=None):
    """
    Create a list of random operation sequences of a given length.

    Parameters
    ----------
    opLabels : tuple
        tuple of operation labels to include in operation sequences.

    length : int
        the operation sequence length.

    count : int
        the number of random strings to create.

    seed : int, optional
        If not None, a seed for numpy's random number generator.


    Returns
    -------
    list of Circuits
        A list of random operation sequences as Circuit objects.
    """
    ret = []
    rndm = _rndm.RandomState(seed)  # ok if seed is None
    opLabels = list(opLabels)  # b/c we need to index it below
    for i in range(count):  # pylint: disable=unused-variable
        r = rndm.random_sample(length) * len(opLabels)
        ret.append(_cir.Circuit([opLabels[int(k)] for k in r]))
    return ret 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:33,代碼來源:circuitconstruction.py


注:本文中的numpy.random.RandomState方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。