本文整理匯總了Python中numpy.r_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.r_方法的具體用法?Python numpy.r_怎麽用?Python numpy.r_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.r_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: zipf_distribution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def zipf_distribution(nbr_symbols, alpha):
"""Helper function: Create a Zipf distribution.
Args:
nbr_symbols: number of symbols to use in the distribution.
alpha: float, Zipf's Law Distribution parameter. Default = 1.5.
Usually for modelling natural text distribution is in
the range [1.1-1.6].
Returns:
distr_map: list of float, Zipf's distribution over nbr_symbols.
"""
tmp = np.power(np.arange(1, nbr_symbols + 1), -alpha)
zeta = np.r_[0.0, np.cumsum(tmp)]
return [x / zeta[-1] for x in zeta]
示例2: fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def fit(self, Xs, Xt):
'''
Fit source and target using KMM (compute the coefficients)
:param Xs: ns * dim
:param Xt: nt * dim
:return: Coefficients (Pt / Ps) value vector (Beta in the paper)
'''
ns = Xs.shape[0]
nt = Xt.shape[0]
if self.eps == None:
self.eps = self.B / np.sqrt(ns)
K = kernel(self.kernel_type, Xs, None, self.gamma)
kappa = np.sum(kernel(self.kernel_type, Xs, Xt, self.gamma) * float(ns) / float(nt), axis=1)
K = matrix(K)
kappa = matrix(kappa)
G = matrix(np.r_[np.ones((1, ns)), -np.ones((1, ns)), np.eye(ns), -np.eye(ns)])
h = matrix(np.r_[ns * (1 + self.eps), ns * (self.eps - 1), self.B * np.ones((ns,)), np.zeros((ns,))])
sol = solvers.qp(K, -kappa, G, h)
beta = np.array(sol['x'])
return beta
示例3: get_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def get_batch(self, X, y):
if self.curr == 0:
self.add_obs(X, y)
return X, y
if (self.curr < self.n) and (isinstance(self.X_reserve, list)):
if not self.has_sparse:
old_X = np.concatenate(self.X_reserve, axis=0)
else:
old_X = sp_vstack(self.X_reserve)
old_y = np.concatenate(self.y_reserve, axis=0)
else:
old_X = self.X_reserve[:self.curr].copy()
old_y = self.y_reserve[:self.curr].copy()
if X.shape[0] == 0:
return old_X, old_y
else:
self.add_obs(X, y)
if not issparse(old_X) and not issparse(X):
return np.r_[old_X, X], np.r_[old_y, y]
else:
return sp_vstack([old_X, X]), np.r_[old_y, y]
示例4: make_sessions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def make_sessions(data, session_th=30 * 60, is_ordered=False, user_key='user_id', item_key='item_id', time_key='ts'):
"""Assigns session ids to the events in data without grouping keys"""
if not is_ordered:
# sort data by user and time
data.sort_values(by=[user_key, time_key], ascending=True, inplace=True)
# compute the time difference between queries
tdiff = np.diff(data[time_key].values)
# check which of them are bigger then session_th
split_session = tdiff > session_th
split_session = np.r_[True, split_session]
# check when the user chenges is data
new_user = data['user_id'].values[1:] != data['user_id'].values[:-1]
new_user = np.r_[True, new_user]
# a new sessions stars when at least one of the two conditions is verified
new_session = np.logical_or(new_user, split_session)
# compute the session ids
session_ids = np.cumsum(new_session)
data['session_id'] = session_ids
return data
示例5: read_segments_as_bool_vec
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def read_segments_as_bool_vec(segments_file):
""" [ bool_vec ] = read_segments_as_bool_vec(segments_file)
using kaldi 'segments' file for 1 wav, format : '<utt> <rec> <t-beg> <t-end>'
- t-beg, t-end is in seconds,
- assumed 100 frames/second,
"""
segs = np.loadtxt(segments_file, dtype='object,object,f,f', ndmin=1)
# Sanity checks,
assert(len(segs) > 0) # empty segmentation is an error,
assert(len(np.unique([rec[1] for rec in segs ])) == 1) # segments with only 1 wav-file,
# Convert time to frame-indexes,
start = np.rint([100 * rec[2] for rec in segs]).astype(int)
end = np.rint([100 * rec[3] for rec in segs]).astype(int)
# Taken from 'read_lab_to_bool_vec', htk.py,
frms = np.repeat(np.r_[np.tile([False,True], len(end)), False],
np.r_[np.c_[start - np.r_[0, end[:-1]], end-start].flat, 0])
assert np.sum(end-start) == np.sum(frms)
return frms
示例6: load
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def load(self):
categories = ['comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware']
newsgroups_train = fetch_20newsgroups(
subset='train', remove=('headers', 'footers', 'quotes'), categories=categories)
newsgroups_test = fetch_20newsgroups(
subset='test', remove=('headers', 'footers', 'quotes'), categories=categories)
vectorizer = TfidfVectorizer(stop_words='english', min_df=0.001, max_df=0.20)
vectors = vectorizer.fit_transform(newsgroups_train.data)
vectors_test = vectorizer.transform(newsgroups_test.data)
x1 = vectors
y1 = newsgroups_train.target
x2 = vectors_test
y2 = newsgroups_test.target
x = np.array(np.r_[x1.todense(), x2.todense()])
y = np.r_[y1, y2]
return x, y
示例7: test_float64_pass
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def test_float64_pass(self):
# The number of units of least precision
# In this case, use a few places above the lowest level (ie nulp=1)
nulp = 5
x = np.linspace(-20, 20, 50, dtype=np.float64)
x = 10**x
x = np.r_[-x, x]
# Addition
eps = np.finfo(x.dtype).eps
y = x + x*eps*nulp/2.
assert_array_almost_equal_nulp(x, y, nulp)
# Subtraction
epsneg = np.finfo(x.dtype).epsneg
y = x - x*epsneg*nulp/2.
assert_array_almost_equal_nulp(x, y, nulp)
示例8: test_complex128_pass
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def test_complex128_pass(self):
nulp = 5
x = np.linspace(-20, 20, 50, dtype=np.float64)
x = 10**x
x = np.r_[-x, x]
xi = x + x*1j
eps = np.finfo(x.dtype).eps
y = x + x*eps*nulp/2.
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
# The test condition needs to be at least a factor of sqrt(2) smaller
# because the real and imaginary parts both change
y = x + x*eps*nulp/4.
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
epsneg = np.finfo(x.dtype).epsneg
y = x - x*epsneg*nulp/2.
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
y = x - x*epsneg*nulp/4.
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
示例9: test_complex64_pass
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def test_complex64_pass(self):
nulp = 5
x = np.linspace(-20, 20, 50, dtype=np.float32)
x = 10**x
x = np.r_[-x, x]
xi = x + x*1j
eps = np.finfo(x.dtype).eps
y = x + x*eps*nulp/2.
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
y = x + x*eps*nulp/4.
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
epsneg = np.finfo(x.dtype).epsneg
y = x - x*epsneg*nulp/2.
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
y = x - x*epsneg*nulp/4.
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
示例10: _audio_events_extraction
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def _audio_events_extraction(audio_t, audio_fronts):
"""
From detected fronts on the audio sync traces, outputs the synchronisation events
related to tone in
:param audio_t: numpy vector containing times of fronts
:param audio_fronts: numpy vector containing polarity of fronts (1 rise, -1 fall)
:return: numpy arrays t_ready_tone_in, t_error_tone_in
"""
# make sure that there are no 2 consecutive fall or consecutive rise events
assert(np.all(np.abs(np.diff(audio_fronts)) == 2))
# take only even time differences: ie. from rising to falling fronts
dt = np.diff(audio_t)[::2]
# detect ready tone by length below 110 ms
i_ready_tone_in = np.r_[np.where(dt <= 0.11)[0] * 2]
t_ready_tone_in = audio_t[i_ready_tone_in]
# error tones are events lasting from 400ms to 600ms
i_error_tone_in = np.where(np.logical_and(0.4 < dt, dt < 1.2))[0] * 2
t_error_tone_in = audio_t[i_error_tone_in]
return t_ready_tone_in, t_error_tone_in
示例11: raster_complete
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def raster_complete(R, times, Clusters):
'''
Plot a rasterplot for the complete recording
(might be slow, restrict R if so),
ordered by insertion depth
'''
plt.imshow(R, aspect='auto', cmap='binary', vmax=T_BIN / 0.001 / 4,
origin='lower', extent=np.r_[times[[0, -1]], Clusters[[0, -1]]])
plt.xlabel('Time (s)')
plt.ylabel('Cluster #; ordered by depth')
plt.show()
# plt.savefig('/home/mic/Rasters/%s.svg' %(trial_number))
# plt.close('all')
plt.tight_layout()
示例12: trapz_inte_edge
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def trapz_inte_edge(y, x):
""" Trapezoidal integration including edge grids
Parameters:
y: Array of y-axis value
x: Array of x-axis value
Returns:
Area corresponded to each y (or x) value
For Example,
Area corresponded to at y_n is
..math:
0.5*y_n ((x_{n} - x_{n-1}) + (x_{n+1} - x_{n}))
Area corresponded to at y_0 (start point(edge)) is
..math:
0.5*y_0(x_{1} - x_{0})
"""
weight_x_0 = 0.5 * (x[1] - x[0])
weight_x_f = 0.5 * (x[-1] - x[-2])
weight_x_n = 0.5 * (x[1:-1] - x[:-2]) + 0.5 * (x[2:] - x[1:-1])
weight_x = np.r_[weight_x_0, weight_x_n, weight_x_f]
return weight_x*y
示例13: test_estimate_F0statistics
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def test_estimate_F0statistics(self):
f0stats = F0statistics()
orgf0s = []
for i in range(1, 4):
orgf0s.append(200 * np.r_[np.random.rand(100 * i), np.zeros(100)])
orgf0stats = f0stats.estimate(orgf0s)
tarf0s = []
for i in range(1, 8):
tarf0s.append(300 * np.r_[np.random.rand(100 * i), np.zeros(100)])
tarf0stats = f0stats.estimate(tarf0s)
orgf0 = 200 * np.r_[np.random.rand(100 * i), np.zeros(100)]
cvf0 = f0stats.convert(orgf0, orgf0stats, tarf0stats)
assert len(orgf0) == len(cvf0)
示例14: extent
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def extent(self):
"""Get the Footprint's extent (`x` then `y`)
Example
-------
>>> minx, maxx, miny, maxy = fp.extent
>>> plt.imshow(arr, extent=fp.extent)
fp.extent from fp.bounds using numpy fancy indexing
>>> minx, maxx, miny, maxy = fp.bounds[[0, 2, 1, 3]]
"""
points = np.r_["1,0,2", self.coords]
return np.asarray([
points[:, 0].min(), points[:, 0].max(),
points[:, 1].min(), points[:, 1].max(),
])
示例15: bounds
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import r_ [as 別名]
def bounds(self):
"""Get the Footprint's bounds (`min` then `max`)
Example
-------
>>> minx, miny, maxx, maxy = fp.bounds
fp.bounds from fp.extent using numpy fancy indexing
>>> minx, miny, maxx, maxy = fp.extent[[0, 2, 1, 3]]
"""
points = np.r_["1,0,2", self.coords]
return np.asarray([
points[:, 0].min(), points[:, 1].min(),
points[:, 0].max(), points[:, 1].max(),
])