本文整理匯總了Python中numpy.ptp方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ptp方法的具體用法?Python numpy.ptp怎麽用?Python numpy.ptp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.ptp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: spline_transform_multi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def spline_transform_multi(img, mask):
bimask=mask>0
M,N=np.where(bimask)
w=np.ptp(N)+1
h=np.ptp(M)+1
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
bound=cv2.dilate(bimask.astype('uint8'),kernel)-bimask
y,x=np.where(bound>0)
if x.size>4:
newxy=thin_plate_transform(x,y,w,h,mask.shape[:2],num_points=5)
new_img=cv2.remap(img,newxy,None,cv2.INTER_LINEAR)
new_msk=cv2.remap(mask,newxy,None,cv2.INTER_NEAREST)
elif x.size>0:
new_img=img
new_msk=mask
return new_img,new_msk
示例2: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def __init__(self, parent=None, visible=True, drawmode=gl.GL_LINES, position=(0, 0, 0), **kwargs):
"""Calculates collision by checking if a point is inside a sphere around the mesh vertices."""
# kwargs['scale'] = np.ptp(parent.vertices, axis=0).max() / 2 if 'scale' not in kwargs else kwargs['scale']
# kwargs['']
from .wavefront import WavefrontReader
from .resources import obj_primitives
reader = WavefrontReader(obj_primitives)
body = reader.bodies[self.primitive_shape]
vertices, normals, texcoords = body['v'], body['vn'], body['vt']
super(ColliderBase, self).__init__(arrays=[vertices, normals, texcoords],
drawmode=drawmode, visible=visible, position=position,
**kwargs)
self.uniforms['diffuse'] = 1., 0, 0
# Changes Scenegraph.parent execution order so self.scale can occur in the CollisionChecker parent property.
if parent:
self.parent = parent
示例3: _hist_bin_sqrt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def _hist_bin_sqrt(x, range):
"""
Square root histogram bin estimator.
Bin width is inversely proportional to the data size. Used by many
programs for its simplicity.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
return x.ptp() / np.sqrt(x.size)
示例4: _hist_bin_sturges
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def _hist_bin_sturges(x, range):
"""
Sturges histogram bin estimator.
A very simplistic estimator based on the assumption of normality of
the data. This estimator has poor performance for non-normal data,
which becomes especially obvious for large data sets. The estimate
depends only on size of the data.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
return x.ptp() / (np.log2(x.size) + 1.0)
示例5: _hist_bin_rice
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def _hist_bin_rice(x, range):
"""
Rice histogram bin estimator.
Another simple estimator with no normality assumption. It has better
performance for large data than Sturges, but tends to overestimate
the number of bins. The number of bins is proportional to the cube
root of data size (asymptotically optimal). The estimate depends
only on size of the data.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
return x.ptp() / (2.0 * x.size ** (1.0 / 3))
示例6: testPtpExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def testPtpExecution(self):
x = arange(4, chunk_size=1).reshape(2, 2)
t = ptp(x, axis=0)
res = self.executor.execute_tensor(t, concat=True)[0]
expected = np.ptp(np.arange(4).reshape(2, 2), axis=0)
np.testing.assert_equal(res, expected)
t = ptp(x, axis=1)
res = self.executor.execute_tensor(t, concat=True)[0]
expected = np.ptp(np.arange(4).reshape(2, 2), axis=1)
np.testing.assert_equal(res, expected)
t = ptp(x)
res = self.executor.execute_tensor(t)[0]
expected = np.ptp(np.arange(4).reshape(2, 2))
np.testing.assert_equal(res, expected)
示例7: overlay_segmentation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def overlay_segmentation(vol, seg):
# Scale volume to greyscale range
vol_greyscale = (255*(vol - np.min(vol))/np.ptp(vol)).astype(int)
# Convert volume to RGB
vol_rgb = np.stack([vol_greyscale, vol_greyscale, vol_greyscale], axis=-1)
# Initialize segmentation in RGB
shp = seg.shape
seg_rgb = np.zeros((shp[0], shp[1], shp[2], 3), dtype=np.int)
# Set class to appropriate color
seg_rgb[np.equal(seg, 1)] = [255, 0, 0]
seg_rgb[np.equal(seg, 2)] = [0, 0, 255]
# Get binary array for places where an ROI lives
segbin = np.greater(seg, 0)
repeated_segbin = np.stack((segbin, segbin, segbin), axis=-1)
# Weighted sum where there's a value to overlay
alpha = 0.3
vol_overlayed = np.where(
repeated_segbin,
np.round(alpha*seg_rgb+(1-alpha)*vol_rgb).astype(np.uint8),
np.round(vol_rgb).astype(np.uint8)
)
# Return final volume with segmentation overlay
return vol_overlayed
示例8: plot_checkpoint
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def plot_checkpoint(self,e):
filename = "/data/sample_"+str(e)+".png"
noise = self.sample_latent_space(16)
images = self.generator.Generator.predict(noise)
plt.figure(figsize=(10,10))
for i in range(images.shape[0]):
plt.subplot(4, 4, i+1)
if self.C==1:
image = images[i, :, :]
image = np.reshape(image, [self.H,self.W])
image = (255*(image - np.min(image))/np.ptp(image)).astype(int)
plt.imshow(image,cmap='gray')
elif self.C==3:
image = images[i, :, :, :]
image = np.reshape(image, [self.H,self.W,self.C])
image = (255*(image - np.min(image))/np.ptp(image)).astype(int)
plt.imshow(image)
plt.axis('off')
plt.tight_layout()
plt.savefig(filename)
plt.close('all')
return
示例9: scale_factors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def scale_factors(self):
"""
Factors to rescale the triangulation into a unit square.
Returns *k*, tuple of 2 scale factors.
Returns
-------
k : tuple of 2 floats (kx, ky)
Tuple of floats that would rescale the triangulation :
``[triangulation.x * kx, triangulation.y * ky]``
fits exactly inside a unit square.
"""
compressed_triangles = self._triangulation.get_masked_triangles()
node_used = (np.bincount(np.ravel(compressed_triangles),
minlength=self._triangulation.x.size) != 0)
return (1 / np.ptp(self._triangulation.x[node_used]),
1 / np.ptp(self._triangulation.y[node_used]))
示例10: compute_ptp_amp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def compute_ptp_amp(data):
"""Peak-to-peak (PTP) amplitude of the data (per channel).
Parameters
----------
data : ndarray, shape (n_channels, n_times)
Returns
-------
output : ndarray, shape (n_channels,)
Notes
-----
Alias of the feature function: **ptp_amp**
"""
return np.ptp(data, axis=-1)
示例11: fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def fit(self, X, y=None):
"""Fit it.
Parameters
----------
X : array, shape (n_epochs, n_times)
The data for one channel.
y : None
Redundant. Necessary to be compatible with sklearn
API.
"""
deltas = np.ptp(X, axis=1)
self.deltas_ = deltas
keep = deltas <= self.thresh
# XXX: actually go over all the folds before setting the min
# in skopt. Otherwise, may confuse skopt.
if self.thresh < np.min(np.ptp(X, axis=1)):
assert np.sum(keep) == 0
keep = deltas <= np.min(np.ptp(X, axis=1))
self.mean_ = _slicemean(X, keep, axis=0)
return self
示例12: _vote_bad_epochs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def _vote_bad_epochs(self, epochs, picks):
"""Each channel votes for an epoch as good or bad.
Parameters
----------
epochs : instance of mne.Epochs
The epochs object for which bad epochs must be found.
picks : array-like
The indices of the channels to consider.
"""
labels = np.zeros((len(epochs), len(epochs.ch_names)))
labels.fill(np.nan)
bad_sensor_counts = np.zeros((len(epochs),))
this_ch_names = [epochs.ch_names[p] for p in picks]
deltas = np.ptp(epochs.get_data()[:, picks], axis=-1).T
threshes = [self.threshes_[ch_name] for ch_name in this_ch_names]
for ch_idx, (delta, thresh) in enumerate(zip(deltas, threshes)):
bad_epochs_idx = np.where(delta > thresh)[0]
labels[:, picks[ch_idx]] = 0
labels[bad_epochs_idx, picks[ch_idx]] = 1
bad_sensor_counts = np.sum(labels == 1, axis=1)
return labels, bad_sensor_counts
示例13: load_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def load_image(filename):
if filename in loaded_files:
return loaded_files[filename]
img = imageio.imread(filename, as_gray=True).astype(np.float)
# Normalize the whole image
# img *= 1.0/(img.max() - img.min())
img = (img - np.min(img))/np.ptp(img)
# Normalize on a sigmoid curve to better separate ink from paper
k = 10
img = np.sqrt(1 / (1 + np.exp(k * (img - 0.5))))
loaded_files[filename] = img
return img
# Pull out the image of a single character.
# Each character has multiple images, specify index (0-5) to choose one
示例14: compute_group
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def compute_group(cls, data, scales, **params):
n = len(data)
if n == 0:
return pd.DataFrame()
weight = data.get('weight')
if params['trim']:
range_y = data['y'].min(), data['y'].max()
else:
range_y = scales.y.dimension()
dens = compute_density(data['y'], weight, range_y, **params)
dens['y'] = dens['x']
dens['x'] = np.mean([data['x'].min(), data['x'].max()])
# Compute width if x has multiple values
if len(np.unique(data['x'])) > 1:
dens['width'] = np.ptp(data['x']) * 0.9
return dens
示例15: test_swarmspan
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ptp [as 別名]
def test_swarmspan():
print('Testing swarmspans')
base_mean = np.random.randint(10, 101)
seed, ptp, df = create_dummy_dataset(base_mean=base_mean)
print('\nSeed = {}; base mean = {}'.format(seed, base_mean))
for c in df.columns[1:-1]:
print('{}...'.format(c))
f1, swarmplt = plt.subplots(1)
sns.swarmplot(data=df[[df.columns[0], c]], ax=swarmplt)
sns_yspans = []
for coll in swarmplt.collections:
sns_yspans.append(get_swarm_yspans(coll))
f2, b = _api.plot(data=df, idx=(df.columns[0], c))
dabest_yspans = []
for coll in f2.axes[0].collections:
dabest_yspans.append(get_swarm_yspans(coll))
for j, span in enumerate(sns_yspans):
assert span == pytest.approx(dabest_yspans[j])