當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.prod方法代碼示例

本文整理匯總了Python中numpy.prod方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.prod方法的具體用法?Python numpy.prod怎麽用?Python numpy.prod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.prod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_fans

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def get_fans(shape, dim_ordering='th'):
    if len(shape) == 2:
        fan_in = shape[0]
        fan_out = shape[1]
    elif len(shape) == 4 or len(shape) == 5:
        # assuming convolution kernels (2D or 3D).
        # TH kernel shape: (depth, input_depth, ...)
        # TF kernel shape: (..., input_depth, depth)
        if dim_ordering == 'th':
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size
        elif dim_ordering == 'tf':
            receptive_field_size = np.prod(shape[:2])
            fan_in = shape[-2] * receptive_field_size
            fan_out = shape[-1] * receptive_field_size
        else:
            raise ValueError('Invalid dim_ordering: ' + dim_ordering)
    else:
        # no specific assumptions
        fan_in = np.sqrt(np.prod(shape))
        fan_out = np.sqrt(np.prod(shape))
    return fan_in, fan_out 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:25,代碼來源:initializations.py

示例2: print_layers

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def print_layers(self, title=None, hide_layers_with_no_params=False):
        if title is None: title = self.name
        print()
        print('%-28s%-12s%-24s%-24s' % (title, 'Params', 'OutputShape', 'WeightShape'))
        print('%-28s%-12s%-24s%-24s' % (('---',) * 4))

        total_params = 0
        for layer_name, layer_output, layer_trainables in self.list_layers():
            weights = [var for var in layer_trainables if var.name.endswith('/weight:0')]
            num_params = sum(np.prod(shape_to_list(var.shape)) for var in layer_trainables)
            total_params += num_params
            if hide_layers_with_no_params and num_params == 0:
                continue

            print('%-28s%-12s%-24s%-24s' % (
                layer_name,
                num_params if num_params else '-',
                layer_output.shape,
                weights[0].shape if len(weights) == 1 else '-'))

        print('%-28s%-12s%-24s%-24s' % (('---',) * 4))
        print('%-28s%-12s%-24s%-24s' % ('Total', total_params, '', ''))
        print()

    # Construct summary ops to include histograms of all trainable parameters in TensorBoard. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:27,代碼來源:tfutil.py

示例3: generate_fake_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8):
    network_pkl = misc.locate_network_pkl(run_id, snapshot)
    if png_prefix is None:
        png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
    random_state = np.random.RandomState(random_seed)

    print('Loading network from "%s"...' % network_pkl)
    G, D, Gs = misc.load_network_pkl(run_id, snapshot)

    result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
    for png_idx in range(num_pngs):
        print('Generating png %d / %d...' % (png_idx, num_pngs))
        latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state)
        labels = np.zeros([latents.shape[0], 0], np.float32)
        images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
        misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size)
    open(os.path.join(result_subdir, '_done.txt'), 'wt').close()

#----------------------------------------------------------------------------
# Generate MP4 video of random interpolations using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:23,代碼來源:util_scripts.py

示例4: ensure_flat_frame

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def ensure_flat_frame(f, frame=None):
    def _wrapper_func(self, coords, **kwargs):
        if (frame is not None) and (coords.frame.name != frame):
            coords_transf = coords.transform_to(frame)
        else:
            coords_transf = coords

        is_array = not coords.isscalar
        if is_array:
            orig_shape = coords.shape
            shape_flat = (np.prod(orig_shape),)
            coords_transf = coords_to_shape(coords_transf, shape_flat)
        else:
            coords_transf = coords_to_shape(coords_transf, (1,))

        out = f(self, coords_transf, **kwargs)

        if is_array:
            out.shape = orig_shape + out.shape[1:]
        else:
            out = out[0]

        return out

    return _wrapper_func 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:27,代碼來源:map_base.py

示例5: fapply

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def fapply(f, x, tz=False):
    '''
    fapply(f,x) yields the result of applying f either to x, if x is a normal value or array, or to
      x.data if x is a sparse matrix. Does not modify x (unless f modifiex x).

    The optional argument tz (default: False) may be set to True to specify that, if x is a sparse 
    matrix that contains at least 1 element that is a sparse-zero, then f(0) should replace all the
    sparse-zeros in x (unless f(0) == 0).
    '''
    if sps.issparse(x):
        y = x.copy()
        y.data = f(x.data)
        if tz and y.getnnz() < np.prod(y.shape):
            z = f(np.array(0))
            if z != 0:
                y = y.toarray()
                y[y == 0] = z
        return y
    else: return f(x) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:21,代碼來源:core.py

示例6: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def update(self, labels, preds):
        """Updates the internal evaluation result.

        Parameters
        ----------
        labels : list of `NDArray`
            The labels of the data.

        preds : list of `NDArray`
            Predicted values.
        """
        labels, preds = check_label_shapes(labels, preds, True)

        for label, pred in zip(labels, preds):
            label = label.asnumpy()
            pred = pred.asnumpy()

            if len(label.shape) == 1:
                label = label.reshape(label.shape[0], 1)
            if len(pred.shape) == 1:
                pred = pred.reshape(pred.shape[0], 1)

            self.sum_metric += numpy.abs(label - pred).mean()
            self.num_inst += 1 # numpy.prod(label.shape) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:metric.py

示例7: _init_weight

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def _init_weight(self, name, arr):
        shape = arr.shape
        hw_scale = 1.
        if len(shape) < 2:
            raise ValueError('Xavier initializer cannot be applied to vector {0}. It requires at'
                             ' least 2D.'.format(name))
        if len(shape) > 2:
            hw_scale = np.prod(shape[2:])
        fan_in, fan_out = shape[1] * hw_scale, shape[0] * hw_scale
        factor = 1.
        if self.factor_type == "avg":
            factor = (fan_in + fan_out) / 2.0
        elif self.factor_type == "in":
            factor = fan_in
        elif self.factor_type == "out":
            factor = fan_out
        else:
            raise ValueError("Incorrect factor type")
        scale = np.sqrt(self.magnitude / factor)
        if self.rnd_type == "uniform":
            random.uniform(-scale, scale, out=arr)
        elif self.rnd_type == "gaussian":
            random.normal(0, scale, out=arr)
        else:
            raise ValueError("Unknown random type") 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:initializer.py

示例8: size

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def size(self):
        """Number of elements in the array.

        Equivalent to the product of the array's dimensions.

        Examples
        --------
        >>> import numpy as np
        >>> x = mx.nd.zeros((3, 5, 2))
        >>> x.size
        30
        >>> np.prod(x.shape)
        30
        """
        size = 1
        for i in self.shape:
            size *= i
        return size 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:ndarray.py

示例9: _finish_deferred_init

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def _finish_deferred_init(self):
        """Finishes deferred initialization."""
        if not self._deferred_init:
            return
        init, ctx, default_init, data = self._deferred_init
        self._deferred_init = ()
        assert self.shape is not None and np.prod(self.shape) > 0, \
            "Cannot initialize Parameter '%s' because it has " \
            "invalid shape: %s. Please specify in_units, " \
            "in_channels, etc for `Block`s."%(
                self.name, str(self.shape))

        with autograd.pause():
            if data is None:
                data = ndarray.zeros(shape=self.shape, dtype=self.dtype,
                                     ctx=context.cpu(), stype=self._stype)
                initializer.create(default_init)(
                    initializer.InitDesc(self.name, {'__init__': init}), data)

            self._init_impl(data, ctx) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:parameter.py

示例10: test_sparse_nd_storage_fallback

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def test_sparse_nd_storage_fallback():
    def check_output_fallback(shape):
        ones = mx.nd.ones(shape)
        out = mx.nd.zeros(shape=shape, stype='csr')
        mx.nd.broadcast_add(ones, ones * 2, out=out)
        assert(np.sum(out.asnumpy() - 3) == 0)

    def check_input_fallback(shape):
        ones = mx.nd.ones(shape)
        out = mx.nd.broadcast_add(ones.tostype('csr'), ones.tostype('row_sparse'))
        assert(np.sum(out.asnumpy() - 2) == 0)

    def check_fallback_with_temp_resource(shape):
        ones = mx.nd.ones(shape)
        out = mx.nd.sum(ones)
        assert(out.asscalar() == np.prod(shape))

    shape = rand_shape_2d()
    check_output_fallback(shape)
    check_input_fallback(shape)
    check_fallback_with_temp_resource(shape) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:test_sparse_ndarray.py

示例11: count_weights

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def count_weights(scope=None, exclude=None, graph=None):
  """Count learnable parameters.

  Args:
    scope: Resrict the count to a variable scope.
    exclude: Regex to match variable names to exclude.
    graph: Operate on a graph other than the current default graph.

  Returns:
    Number of learnable parameters as integer.
  """
  if scope:
    scope = scope if scope.endswith('/') else scope + '/'
  graph = graph or tf.get_default_graph()
  vars_ = graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
  if scope:
    vars_ = [var for var in vars_ if var.name.startswith(scope)]
  if exclude:
    exclude = re.compile(exclude)
    vars_ = [var for var in vars_ if not exclude.match(var.name)]
  shapes = [var.get_shape().as_list() for var in vars_]
  return int(sum(np.prod(shape) for shape in shapes)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:count_weights.py

示例12: sample

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def sample(self, shape):
        import numpy as np
        rng = lasagne.random.get_rng()
        if len(shape) >= 4:
            # convolutions use Gaussians with stddev of sqrt(2/fan_out), see
            # https://github.com/liuzhuang13/DenseNet/blob/cbb6bff/densenet.lua#L85-L86
            # and https://github.com/facebook/fb.resnet.torch/issues/106
            fan_out = shape[0] * np.prod(shape[2:])
            W = rng.normal(0, np.sqrt(2. / fan_out),
                           size=shape)
        elif len(shape) == 2:
            # the dense layer uses Uniform of range sqrt(1/fan_in), see
            # https://github.com/torch/nn/blob/651103f/Linear.lua#L21-L43
            fan_in = shape[0]
            W = rng.uniform(-np.sqrt(1. / fan_in), np.sqrt(1. / fan_in),
                            size=shape)
        return lasagne.utils.floatX(W) 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:19,代碼來源:densenet.py

示例13: ortho_init

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def ortho_init(scale=1.0):
    def _ortho_init(shape, dtype, partition_info=None):
        #lasagne ortho init for tf
        shape = tuple(shape)
        if len(shape) == 2:
            flat_shape = shape
        elif len(shape) == 4: # assumes NHWC
            flat_shape = (np.prod(shape[:-1]), shape[-1])
        else:
            raise NotImplementedError
        a = np.random.normal(0.0, 1.0, flat_shape)
        u, _, v = np.linalg.svd(a, full_matrices=False)
        q = u if u.shape == flat_shape else v # pick the one with the correct shape
        q = q.reshape(shape)
        return (scale * q[:shape[0], :shape[1]]).astype(np.float32)
    return _ortho_init 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:18,代碼來源:utils.py

示例14: _cac_conv

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def _cac_conv(layer, input, output):
    # bs, ic, ih, iw = input[0].shape
    oh, ow = output.shape[-2:]
    kh, kw = layer.kernel_size
    ic, oc = layer.in_channels, layer.out_channels
    g = layer.groups

    tb_params = 0
    ntb__params = 0
    flops = 0
    if hasattr(layer, 'weight') and hasattr(layer.weight, 'shape'):
        params = np.prod(layer.weight.shape)
        t, n = _cac_grad_params(params, layer.weight)
        tb_params += t
        ntb__params += n
        flops += (2 * ic * kh * kw - 1) * oh * ow * (oc // g)
    if hasattr(layer, 'bias') and hasattr(layer.bias, 'shape'):
        params = np.prod(layer.bias.shape)
        t, n = _cac_grad_params(params, layer.bias)
        tb_params += t
        ntb__params += n
        flops += oh * ow * (oc // g)
    return tb_params, ntb__params, flops 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:25,代碼來源:summary.py

示例15: _cac_xx_norm

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import prod [as 別名]
def _cac_xx_norm(layer, input, output):
    tb_params = 0
    ntb__params = 0
    if hasattr(layer, 'weight') and hasattr(layer.weight, 'shape'):
        params = np.prod(layer.weight.shape)
        t, n = _cac_grad_params(params, layer.weight)
        tb_params += t
        ntb__params += n
    if hasattr(layer, 'bias') and hasattr(layer.bias, 'shape'):
        params = np.prod(layer.bias.shape)
        t, n = _cac_grad_params(params, layer.bias)
        tb_params += t
        ntb__params += n
    if hasattr(layer, 'running_mean') and hasattr(layer.running_mean, 'shape'):
        params = np.prod(layer.running_mean.shape)
        ntb__params += params
    if hasattr(layer, 'running_var') and hasattr(layer.running_var, 'shape'):
        params = np.prod(layer.running_var.shape)
        ntb__params += params
    in_shape = input[0]
    flops = np.prod(in_shape.shape)
    if layer.affine:
        flops *= 2
    return tb_params, ntb__params, flops 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:26,代碼來源:summary.py


注:本文中的numpy.prod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。