當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.power方法代碼示例

本文整理匯總了Python中numpy.power方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.power方法的具體用法?Python numpy.power怎麽用?Python numpy.power使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.power方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cost

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def cost(params, Y, R, num_features):
    Y = np.matrix(Y)  # (1682, 943)
    R = np.matrix(R)  # (1682, 943)
    num_movies = Y.shape[0]
    num_users = Y.shape[1]
    
    # reshape the parameter array into parameter matrices
    X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features)))  # (1682, 10)
    Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features)))  # (943, 10)
    
    # initializations
    J = 0
    
    # compute the cost
    error = np.multiply((X * Theta.T) - Y, R)  # (1682, 943)
    squared_error = np.power(error, 2)  # (1682, 943)
    J = (1. / 2) * np.sum(squared_error)
    
    return J 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:21,代碼來源:9_anomaly_and_rec.py

示例2: prepare_poly_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def prepare_poly_data(*args, power):
    """
    args: keep feeding in X, Xval, or Xtest
        will return in the same order
    """
    def prepare(x):
        # expand feature
        df = poly_features(x, power=power)

        # normalization
        ndarr = normalize_feature(df).as_matrix()

        # add intercept term
        return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1)

    return [prepare(x) for x in args] 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:18,代碼來源:6_bias_variance.py

示例3: spectrogram2wav

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def spectrogram2wav(mag):
    '''# Generate wave file from spectrogram'''
    # transpose
    mag = mag.T

    # de-noramlize
    mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db

    # to amplitude
    mag = np.power(10.0, mag * 0.05)

    # wav reconstruction
    wav = griffin_lim(mag)

    # de-preemphasis
    wav = signal.lfilter([1], [1, -hp.preemphasis], wav)

    # trim
    wav, _ = librosa.effects.trim(wav)

    return wav.astype(np.float32) 
開發者ID:KinglittleQ,項目名稱:GST-Tacotron,代碼行數:23,代碼來源:utils.py

示例4: test_return_l2_regularizer_weights

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def test_return_l2_regularizer_weights(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
          weight: 0.42
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]

    regularizer = conv_scope_arguments['weights_regularizer']
    weights = np.array([1., -1, 4., 2.])
    with self.test_session() as sess:
      result = sess.run(regularizer(tf.constant(weights)))
    self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:hyperparams_builder_test.py

示例5: speech_aug_scheduler

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def speech_aug_scheduler(step, s_r, s_i, s_f, peak_lr):
    # Starting from 0, ramp-up to set LR and  converge to 0.01*LR, w/ exp. decay
    final_lr_ratio = 0.01
    exp_decay_lambda = -np.log10(final_lr_ratio)/(s_f-s_i) # Approx. w/ 10-based
    cur_step = step+1

    if cur_step<s_r:
        # Ramp-up
        return peak_lr*float(cur_step)/s_r
    elif cur_step<s_i:
        # Hold
        return peak_lr
    elif cur_step<=s_f:
        # Decay
        return peak_lr*np.power(10,-exp_decay_lambda*(cur_step-s_i))
    else:
        # Converge
        return peak_lr*final_lr_ratio 
開發者ID:Alexander-H-Liu,項目名稱:End-to-end-ASR-Pytorch,代碼行數:20,代碼來源:optim.py

示例6: zipf_distribution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def zipf_distribution(nbr_symbols, alpha):
  """Helper function: Create a Zipf distribution.

  Args:
    nbr_symbols: number of symbols to use in the distribution.
    alpha: float, Zipf's Law Distribution parameter. Default = 1.5.
      Usually for modelling natural text distribution is in
      the range [1.1-1.6].

  Returns:
    distr_map: list of float, Zipf's distribution over nbr_symbols.

  """
  tmp = np.power(np.arange(1, nbr_symbols + 1), -alpha)
  zeta = np.r_[0.0, np.cumsum(tmp)]
  return [x / zeta[-1] for x in zeta] 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:algorithmic.py

示例7: class_balanced_weight

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def class_balanced_weight(beta, samples_per_class):
    assert 0 <= beta < 1, 'Wrong rang of beta {}'.format(beta)
    if not isinstance(samples_per_class, np.ndarray):
        if isinstance(samples_per_class, (list, tuple)):
            samples_per_class = np.array(samples_per_class)
        elif torch.is_tensor(samples_per_class):
            samples_per_class = samples_per_class.numpy()
        else:
            raise NotImplementedError(
                'Type of samples_per_class should be {}, {} or {} but got {}'.format(
                    (list, tuple), np.ndarray, torch.Tensor, type(samples_per_class)))
    assert isinstance(samples_per_class, np.ndarray) \
        and isinstance(beta, numbers.Number)

    balanced_matrix = (1 - beta) / (1 - np.power(beta, samples_per_class))
    return torch.Tensor(balanced_matrix) 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:18,代碼來源:functional.py

示例8: get_poly_cc

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def get_poly_cc(n, k, t):
    """ This is a helper function to get the coeffitient of coefficient for n-th
        order polynomial with k-th derivative at time t.
    """
    assert (n > 0 and k >= 0), "order and derivative must be positive."

    cc = np.ones(n)
    D  = np.linspace(0, n-1, n)

    for i in range(n):
        for j in range(k):
            cc[i] = cc[i] * D[i]
            D[i] = D[i] - 1
            if D[i] == -1:
                D[i] = 0

    for i, c in enumerate(cc):
        cc[i] = c * np.power(t, D[i])

    return cc

# Minimum Snap Trajectory 
開發者ID:hbd730,項目名稱:quadcopter-simulation,代碼行數:24,代碼來源:trajGen3D.py

示例9: test_get_poly_cc_t

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def test_get_poly_cc_t(self):
        cc = trajGen3D.get_poly_cc(4, 0, 1)
        expected = [1, 1, 1, 1]
        np.testing.assert_array_equal(cc, expected)

        cc = trajGen3D.get_poly_cc(8, 0, 2)
        expected = [1, 2, 4, 8, 16, 32, 64, 128]
        np.testing.assert_array_equal(cc, expected)

        cc = trajGen3D.get_poly_cc(8, 1, 1)
        expected = np.linspace(0, 7, 8)
        np.testing.assert_array_equal(cc, expected)

        t = 2
        cc = trajGen3D.get_poly_cc(8, 1, t)
        expected = [0, 1, 2*t, 3*np.power(t,2), 4*np.power(t,3), 5*np.power(t,4), 6*np.power(t,5), 7*np.power(t,6)]
        np.testing.assert_array_equal(cc, expected) 
開發者ID:hbd730,項目名稱:quadcopter-simulation,代碼行數:19,代碼來源:test_trajGen3D.py

示例10: normalize_adj

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def normalize_adj(A, is_sym=True, exponent=0.5):
  """
    Normalize adjacency matrix

    is_sym=True: D^{-1/2} A D^{-1/2}
    is_sym=False: D^{-1} A
  """
  rowsum = np.array(A.sum(1))

  if is_sym:
    r_inv = np.power(rowsum, -exponent).flatten()
  else:
    r_inv = np.power(rowsum, -1.0).flatten()

  r_inv[np.isinf(r_inv)] = 0.

  if sp.isspmatrix(A):
    r_mat_inv = sp.diags(r_inv.squeeze())
  else:
    r_mat_inv = np.diag(r_inv)

  if is_sym:
    return r_mat_inv.dot(A).dot(r_mat_inv)
  else:
    return r_mat_inv.dot(A) 
開發者ID:lrjconan,項目名稱:LanczosNetwork,代碼行數:27,代碼來源:data_helper.py

示例11: impulseamp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def impulseamp(self,tnow):
        """
        Apply impulsive wave to the system
        Args:
            tnow: float
                Current time in A.U.
        Returns:
            amp: float
                Amplitude of field at time
            ison: bool
                On whether field is on or off

        """
        amp = self.fieldamp*np.sin(self.fieldfreq*tnow)*\
        (1.0/math.sqrt(2.0*3.1415*self.tau*self.tau))*\
        np.exp(-1.0*np.power(tnow-self.tOn,2.0)/(2.0*self.tau*self.tau))
        ison = False
        if (np.abs(amp)>self.field_tol):
            ison = True
        return amp,ison 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:22,代碼來源:tdfields.py

示例12: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super(AverageHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)
        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_norm = nn.LayerNorm(d_model)

        self.fc = nn.Linear(d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)

        self.dropout = nn.Dropout(dropout) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:23,代碼來源:Transformer.py

示例13: get_sinusoid_encoding_table

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    ''' Sinusoid position encoding table '''

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return torch.FloatTensor(sinusoid_table) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:21,代碼來源:Transformer.py

示例14: scotts_factor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def scotts_factor(self):
        return power(self.n, -1./(self.d+4)) 
開發者ID:svviz,項目名稱:svviz,代碼行數:4,代碼來源:kde.py

示例15: imcv2_recolor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import power [as 別名]
def imcv2_recolor(im, a = .1):
	t = [np.random.uniform()]
	t += [np.random.uniform()]
	t += [np.random.uniform()]
	t = np.array(t) * 2. - 1.

	# random amplify each channel
	im = im * (1 + t * a)
	mx = 255. * (1 + a)
	up = np.random.uniform() * 2 - 1
# 	im = np.power(im/mx, 1. + up * .5)
	im = cv2.pow(im/mx, 1. + up * .5)
	return np.array(im * 255., np.uint8) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:15,代碼來源:im_transform.py


注:本文中的numpy.power方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。