本文整理匯總了Python中numpy.polynomial.legendre.leggauss方法的典型用法代碼示例。如果您正苦於以下問題:Python legendre.leggauss方法的具體用法?Python legendre.leggauss怎麽用?Python legendre.leggauss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.polynomial.legendre
的用法示例。
在下文中一共展示了legendre.leggauss方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: leggauss_ab
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def leggauss_ab(n=96, a=-1.0, b=1.0):
assert(n>0)
x,w = np.polynomial.legendre.leggauss(n)
x = (b-a) * 0.5 * x+(b+a) * 0.5
w = w * (b-a) * 0.5
return x,w
示例2: __init__
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def __init__(self, lm=None, jmx=7, ngl=96, lbdmx=14):
"""
Expansion of the products of two atomic orbitals placed at given locations and around a center between these locations
[1] Talman JD. Multipole Expansions for Numerical Orbital Products, Int. J. Quant. Chem. 107, 1578--1584 (2007)
ngl : order of Gauss-Legendre quadrature
log_mesh : instance of log_mesh_c defining the logarithmic mesh (rr and pp arrays)
jmx : maximal angular momentum quantum number of each atomic orbital in a product
lbdmx : maximal angular momentum quantum number used for the expansion of the product phia*phib
"""
from numpy.polynomial.legendre import leggauss
from pyscf.nao.m_log_interp import log_interp_c
from pyscf.nao.m_csphar_talman_libnao import csphar_talman_libnao as csphar_jt
assert ngl>2
assert jmx>-1
assert hasattr(lm, 'rr')
assert hasattr(lm, 'pp')
self.ngl = ngl
self.lbdmx = lbdmx
self.xx, self.ww = leggauss(ngl)
log_mesh.__init__(self, rr=lm.rr, pp=lm.pp)
self.plval=np.zeros([2*(self.lbdmx+jmx+1), ngl])
self.plval[0,:] = 1.0
self.plval[1,:] = self.xx
for kappa in range(1,2*(self.lbdmx+jmx)+1):
self.plval[kappa+1, :]= ((2*kappa+1)*self.xx*self.plval[kappa, :]-kappa*self.plval[kappa-1, :])/(kappa+1)
self.log_interp = log_interp_c(self.rr)
self.ylm_cr = csphar_jt([0.0,0.0,1.0], self.lbdmx+2*jmx)
return
示例3: test_100
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def test_100(self):
x, w = leg.leggauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = leg.legvander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = 2.0
assert_almost_equal(w.sum(), tgt)
示例4: linspace
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def linspace(b, grid_type='Driscoll-Healy'):
if grid_type == 'Driscoll-Healy':
beta = np.arange(2 * b) * np.pi / (2. * b)
alpha = np.arange(2 * b) * np.pi / b
elif grid_type == 'SOFT':
beta = np.pi * (2 * np.arange(2 * b) + 1) / (4. * b)
alpha = np.arange(2 * b) * np.pi / b
elif grid_type == 'Clenshaw-Curtis':
# beta = np.arange(2 * b + 1) * np.pi / (2 * b)
# alpha = np.arange(2 * b + 2) * np.pi / (b + 1)
# Must use np.linspace to prevent numerical errors that cause beta > pi
beta = np.linspace(0, np.pi, 2 * b + 1)
alpha = np.linspace(0, 2 * np.pi, 2 * b + 2, endpoint=False)
elif grid_type == 'Gauss-Legendre':
x, _ = leggauss(b + 1) # TODO: leggauss docs state that this may not be only stable for orders > 100
beta = np.arccos(x)
alpha = np.arange(2 * b + 2) * np.pi / (b + 1)
elif grid_type == 'HEALPix':
#TODO: implement this here so that we don't need the dependency on healpy / healpix_compat
from healpix_compat import healpy_sphere_meshgrid
return healpy_sphere_meshgrid(b)
elif grid_type == 'equidistribution':
raise NotImplementedError('Not implemented yet; see Fast evaluation of quadrature formulae on the sphere.')
else:
raise ValueError('Unknown grid_type:' + grid_type)
return beta, alpha
示例5: glq_nodes_weights
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def glq_nodes_weights(glq_degrees):
"""
Calculate GLQ unscaled nodes, weights and total number of nodes
Parameters
----------
glq_degrees : list
List of GLQ degrees for each direction: ``longitude``, ``latitude``,
``radius``.
Returns
-------
n_nodes : int
Total number of nodes computed as the product of the GLQ degrees.
glq_nodes : list
Unscaled GLQ nodes for each direction: ``longitude``, ``latitude``,
``radius``.
glq_weights : list
GLQ weights for each node on each direction: ``longitude``,
``latitude``, ``radius``.
"""
# Unpack GLQ degrees
lon_degree, lat_degree, rad_degree = glq_degrees[:]
# Get number of point masses
n_nodes = np.prod(glq_degrees)
# Get nodes coordinates and weights
lon_node, lon_weights = leggauss(lon_degree)
lat_node, lat_weights = leggauss(lat_degree)
rad_node, rad_weights = leggauss(rad_degree)
# Reorder nodes and weights
glq_nodes = (lon_node, lat_node, rad_node)
glq_weights = (lon_weights, lat_weights, rad_weights)
return n_nodes, glq_nodes, glq_weights
示例6: GaussQuadrature
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def GaussQuadrature(N,a=-1,b=1):
if a==-1 and b==1:
return leggauss(N)
# The following is for historical purposes and when the range is different from [-1,1]
N0=N-1
N1 = N0+1
N2 = N0+2
xu = np.linspace(-1.,1.,N1)
# Legendre-Gauss-Vandermonde Matrix
L = 1.0*np.zeros((N1,N2))
# Derivative of Legendre-Gauss-Vandermonde Matrix
Lp = 1.0*np.zeros(N1)
dum = np.linspace(0,N0,N1)
y=np.cos((2*dum+1)*np.pi/(2*N0+2))+(0.27/N1)*np.sin(np.pi*xu*N0/N2)
# PI = np.pi
# y=ne.evaluate("cos((2*dum+1)*PI/(2*N0+2))+(0.27/N1)*sin(PI*xu*N0/N2)")
deps = np.finfo(np.float64).eps
# Initial Guess
y0 = 2.0*np.ones(N1)
while np.max(np.abs(y-y0)) > deps:
L[:,0] = np.ones(N1)
L[:,1] = y
Lp = np.zeros(N1)
for k in range(1,N1):
L[:,k+1] = ((2*k+1)*L[:,k]*y - k*L[:,k-1])/(k+1)
Lp = N2*(L[:,N0]-L[:,N1]*y)/(1-y**2)
y0 = y
y=y0-L[:,N1]/Lp
z = (a*(1-y)+b*(1+y))/2.0
w = (b-a)/((1-y**2)*Lp**2)*pow((np.float64(N2)/N1),2)
z = np.fliplr(z.reshape(1,z.shape[0])).reshape(z.shape[0])
w = np.fliplr(w.reshape(1,w.shape[0])).reshape(w.shape[0])
return (z,w)
示例7: quadrature_weights
# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leggauss [as 別名]
def quadrature_weights(b, grid_type='Gauss-Legendre'):
"""
Compute quadrature weights for a given grid-type.
The function S2.meshgrid generates the points that correspond to the weights generated by this function.
if convention == 'Gauss-Legendre':
The quadrature formula is exact for polynomials up to degree M less than or equal to 2b + 1,
so that we can compute exact Fourier coefficients for f a polynomial of degree at most b.
if convention == 'Clenshaw-Curtis':
The quadrature formula is exact for polynomials up to degree M less than or equal to 2b,
so that we can compute exact Fourier coefficients for f a polynomial of degree at most b.
:param b: the grid resolution. See S2.meshgrid
:param grid_type:
:return:
"""
if grid_type == 'Clenshaw-Curtis':
# There is a faster fft based method to compute these weights
# see "Fast evaluation of quadrature formulae on the sphere"
# W = np.empty((2 * b + 2, 2 * b + 1))
# for j in range(2 * b + 1):
# eps_j_2b = 0.5 if j == 0 or j == 2 * b else 1.
# for k in range(2 * b + 2): # Doesn't seem to depend on k..
# W[k, j] = (4 * np.pi * eps_j_2b) / (b * (2 * b + 2))
# sum = 0.
# for l in range(b + 1):
# eps_l_b = 0.5 if l == 0 or l == b else 1.
# sum += eps_l_b / (1 - 4 * l ** 2) * np.cos(j * l * np.pi / b)
# W[k, j] *= sum
w = _clenshaw_curtis_weights(n=2 * b)
W = np.empty((2 * b + 1, 2 * b + 2))
W[:] = w[:, None]
elif grid_type == 'Gauss-Legendre':
# We found this formula in:
# "A Fast Algorithm for Spherical Grid Rotations and its Application to Singular Quadrature"
# eq. 10
_, w = leggauss(b + 1)
W = w[:, None] * (2 * np.pi / (2 * b + 2) * np.ones(2 * b + 2)[None, :])
elif grid_type == 'SOFT':
print("WARNING: SOFT quadrature weights don't work yet")
k = np.arange(0, b)
w = np.array([(2. / b) * np.sin(np.pi * (2. * j + 1.) / (4. * b)) *
(np.sum((1. / (2 * k + 1))
* np.sin((2 * j + 1) * (2 * k + 1)
* np.pi / (4. * b))))
for j in range(2 * b)])
W = w[:, None] * np.ones(2 * b)[None, :]
else:
raise ValueError('Unknown grid_type:' + str(grid_type))
return W