當前位置: 首頁>>代碼示例>>Python>>正文


Python legendre.leg2poly方法代碼示例

本文整理匯總了Python中numpy.polynomial.legendre.leg2poly方法的典型用法代碼示例。如果您正苦於以下問題:Python legendre.leg2poly方法的具體用法?Python legendre.leg2poly怎麽用?Python legendre.leg2poly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.polynomial.legendre的用法示例。


在下文中一共展示了legendre.leg2poly方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_legfromroots

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def test_legfromroots(self):
        res = leg.legfromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5):
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = leg.legfromroots(roots)
            res = leg.legval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(leg.leg2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:13,代碼來源:test_legendre.py

示例2: test_leg2poly

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def test_leg2poly(self):
        for i in range(10):
            assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:5,代碼來源:test_legendre.py

示例3: test_legfromroots

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def test_legfromroots(self) :
        res = leg.legfromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5) :
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = leg.legfromroots(roots)
            res = leg.legval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(leg.leg2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_legendre.py

示例4: test_leg2poly

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def test_leg2poly(self) :
        for i in range(10) :
            assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:5,代碼來源:test_legendre.py

示例5: _setup

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def _setup(self, config):
        torch.manual_seed(config['seed'])
        self.model = HstackDiagProduct(size=config['size'])
        self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr'])
        self.n_steps_per_epoch = config['n_steps_per_epoch']
        size = config['size']
        # Target: Legendre polynomials
        P = np.zeros((size, size), dtype=np.float64)
        for i, coef in enumerate(np.eye(size)):
            P[i, :i + 1] = legendre.leg2poly(coef)
        self.target_matrix = torch.tensor(P)
        self.br_perm = bitreversal_permutation(size)
        self.input = (torch.eye(size)[:, :, None, None] * torch.eye(2)).unsqueeze(-1)
        self.input_permuted = self.input[:, self.br_perm] 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:16,代碼來源:learning_ops.py

示例6: legendre_transpose_mult_slow

# 需要導入模塊: from numpy.polynomial import legendre [as 別名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 別名]
def legendre_transpose_mult_slow(v):
    """Naive multiplication P^T v where P is the matrix of coefficients of
    Legendre polynomials.
    Parameters:
        v: (batch_size, n)
    Return:
        P^T v: (batch_size, n)
    """
    n = v.shape[-1]
    # Construct the coefficient matrix P for Legendre polynomials
    P = np.zeros((n, n), dtype=np.float32)
    for i, coef in enumerate(np.eye(n)):
        P[i, :i + 1] = legendre.leg2poly(coef)
    P = torch.tensor(P)
    return v @ P 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:17,代碼來源:ops.py


注:本文中的numpy.polynomial.legendre.leg2poly方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。