本文整理匯總了Python中numpy.polynomial.hermite.hermval方法的典型用法代碼示例。如果您正苦於以下問題:Python hermite.hermval方法的具體用法?Python hermite.hermval怎麽用?Python hermite.hermval使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.polynomial.hermite
的用法示例。
在下文中一共展示了hermite.hermval方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_hermval
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_hermval(self):
#check empty input
assert_equal(herm.hermval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Hlist]
for i in range(10):
msg = "At i=%d" % i
tgt = y[i]
res = herm.hermval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(herm.hermval(x, [1]).shape, dims)
assert_equal(herm.hermval(x, [1, 0]).shape, dims)
assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims)
示例2: test_hermvander
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_hermvander(self):
# check for 1d x
x = np.arange(3)
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
示例3: test_displaced_squeezed_state_fock
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_displaced_squeezed_state_fock(self, r_d, phi_d, r_s, phi_s, hbar, cutoff, tol):
"""test displaced squeezed state returns correct Fock basis state vector"""
state = utils.displaced_squeezed_state(r_d, phi_d, r_s, phi_s, basis="fock", fock_dim=cutoff, hbar=hbar)
a = r_d * np.exp(1j * phi_d)
if r_s == 0:
pytest.skip("test only non-zero squeezing")
n = np.arange(cutoff)
gamma = a * np.cosh(r_s) + np.conj(a) * np.exp(1j * phi_s) * np.sinh(r_s)
coeff = np.diag(
(0.5 * np.exp(1j * phi_s) * np.tanh(r_s)) ** (n / 2) / np.sqrt(fac(n) * np.cosh(r_s))
)
expected = H(gamma / np.sqrt(np.exp(1j * phi_s) * np.sinh(2 * r_s)), coeff)
expected *= np.exp(
-0.5 * np.abs(a) ** 2 - 0.5 * np.conj(a) ** 2 * np.exp(1j * phi_s) * np.tanh(r_s)
)
assert np.allclose(state, expected, atol=tol, rtol=0)
示例4: test_hermval
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_hermval(self) :
#check empty input
assert_equal(herm.hermval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Hlist]
for i in range(10) :
msg = "At i=%d" % i
ser = np.zeros
tgt = y[i]
res = herm.hermval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3) :
dims = [2]*i
x = np.zeros(dims)
assert_equal(herm.hermval(x, [1]).shape, dims)
assert_equal(herm.hermval(x, [1, 0]).shape, dims)
assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims)
示例5: test_hermvander
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_hermvander(self) :
# check for 1d x
x = np.arange(3)
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4) :
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4) :
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
示例6: pre_calc
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def pre_calc(self, x, y, beta, n_order, center_x, center_y):
"""
calculates the H_n(x) and H_n(y) for a given x-array and y-array
:param x:
:param y:
:param amp:
:param beta:
:param n_order:
:param center_x:
:param center_y:
:return: list of H_n(x) and H_n(y)
"""
n = len(np.atleast_1d(x))
x_ = x - center_x
y_ = y - center_y
H_x = np.empty((n_order+1, n))
H_y = np.empty((n_order+1, n))
for n in range(0,n_order+1):
prefactor = 1./np.sqrt(2**n*np.sqrt(np.pi)*math.factorial(n))
n_array = np.zeros(n+1)
n_array[n] = 1
H_x[n] = hermite.hermval(x_/beta, n_array) * prefactor * np.exp(-(x_/beta)**2/2.)
H_y[n] = hermite.hermval(y_/beta, n_array) * prefactor * np.exp(-(y_/beta)**2/2.)
return H_x, H_y
示例7: __init__
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def __init__(self, interpolation=False, precalc=False, stable_cut=True, cut_scale=5):
"""
load interpolation of the Hermite polynomials in a range [-30,30] in order n<= 150
:return:
"""
self._interpolation = interpolation
self._precalc = precalc
self._stable_cut = stable_cut
self._cut_scale = cut_scale
if interpolation:
n_order = 50
self.H_interp = [[] for i in range(0, n_order)]
self.x_grid = np.linspace(-50, 50, 6000)
for k in range(0, n_order):
n_array = np.zeros(k+1)
n_array[k] = 1
values = self.hermval(self.x_grid, n_array)
self.H_interp[k] = values
示例8: hermval
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def hermval(self, x, n_array, tensor=True):
"""
computes the Hermit polynomial as numpy.polynomial.hermite.hermval
difference: for values more than sqrt(n_max + 1) * cut_scale, the value is set to zero
this should be faster and numerically stable
:param x: array of values
:param n_array: list of coeffs in H_n
:param cut_scale: scale where the polynomial will be set to zero
:return: see numpy.polynomial.hermite.hermval
"""
if not self._stable_cut:
return hermite.hermval(x, n_array, tensor=tensor)
else:
n_max = len(n_array)
x_cut = np.sqrt(n_max + 1) * self._cut_scale
if isinstance(x, int) or isinstance(x, float):
if x >= x_cut:
return 0
else:
return hermite.hermval(x, n_array)
else:
out = np.zeros_like(x)
out[x < x_cut] = hermite.hermval(x[x < x_cut], n_array, tensor=tensor)
return out
示例9: H_n
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def H_n(self, n, x):
"""
constructs the Hermite polynomial of order n at position x (dimensionless)
:param n: The n'the basis function.
:type name: int.
:param x: 1-dim position (dimensionless)
:type state: float or numpy array.
:returns: array-- H_n(x).
:raises: AttributeError, KeyError
"""
if not self._interpolation:
n_array = np.zeros(n+1)
n_array[n] = 1
return self.hermval(x, n_array, tensor=False) # attention, this routine calculates every single hermite polynomial and multiplies it with zero (exept the right one)
else:
return np.interp(x, self.x_grid, self.H_interp[n])
示例10: test_hermval
# 需要導入模塊: from numpy.polynomial import hermite [as 別名]
# 或者: from numpy.polynomial.hermite import hermval [as 別名]
def test_hermval(self):
x = np.linspace(0, 2000, 2001)
n_array = [1, 2, 3, 0, 1]
import numpy.polynomial.hermite as hermite
out_true = hermite.hermval(x, n_array)
out_approx = self.shapelets.hermval(x, n_array)
shape_true = out_true * np.exp(-x ** 2 / 2.)
shape_approx = out_approx * np.exp(-x ** 2 / 2.)
npt.assert_almost_equal(shape_approx, shape_true, decimal=6)
x = 2
n_array = [1, 2, 3, 0, 1]
out_true = hermite.hermval(x, n_array)
out_approx = self.shapelets.hermval(x, n_array)
npt.assert_almost_equal(out_approx, out_true, decimal=6)
x = 2001
n_array = [1, 2, 3, 0, 1]
out_true = hermite.hermval(x, n_array)
out_approx = self.shapelets.hermval(x, n_array)
shape_true = out_true * np.exp(-x**2/2.)
shape_approx = out_approx * np.exp(-x ** 2 / 2.)
npt.assert_almost_equal(shape_approx, shape_true, decimal=6)