本文整理匯總了Python中numpy.partition方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.partition方法的具體用法?Python numpy.partition怎麽用?Python numpy.partition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.partition方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_argequivalent
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_argequivalent(self):
""" Test it translates from arg<func> to <func> """
from numpy.random import rand
a = rand(3, 4, 5)
funcs = [
(np.sort, np.argsort, dict()),
(_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
(_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
(np.partition, np.argpartition, dict(kth=2)),
]
for func, argfunc, kwargs in funcs:
for axis in list(range(a.ndim)) + [None]:
a_func = func(a, axis=axis, **kwargs)
ai_func = argfunc(a, axis=axis, **kwargs)
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
示例2: _get_scores
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def _get_scores(self):
dataset = self.dataset
self.model.train(dataset)
unlabeled_entry_ids, X_pool = dataset.get_unlabeled_entries()
if isinstance(self.model, ProbabilisticModel):
dvalue = self.model.predict_proba(X_pool)
elif isinstance(self.model, ContinuousModel):
dvalue = self.model.predict_real(X_pool)
if self.method == 'lc': # least confident
score = -np.max(dvalue, axis=1)
elif self.method == 'sm': # smallest margin
if np.shape(dvalue)[1] > 2:
# Find 2 largest decision values
dvalue = -(np.partition(-dvalue, 2, axis=1)[:, :2])
score = -np.abs(dvalue[:, 0] - dvalue[:, 1])
elif self.method == 'entropy':
score = np.sum(-dvalue * np.log(dvalue), axis=1)
return zip(unlabeled_entry_ids, score)
示例3: test_partition_cdtype
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_partition_cdtype(self):
d = array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
('Lancelot', 1.9, 38)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
tgt = np.sort(d, order=['age', 'height'])
assert_array_equal(np.partition(d, range(d.size),
order=['age', 'height']),
tgt)
assert_array_equal(d[np.argpartition(d, range(d.size),
order=['age', 'height'])],
tgt)
for k in range(d.size):
assert_equal(np.partition(d, k, order=['age', 'height'])[k],
tgt[k])
assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
tgt[k])
d = array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
tgt = np.sort(d)
assert_array_equal(np.partition(d, range(d.size)), tgt)
for k in range(d.size):
assert_equal(np.partition(d, k)[k], tgt[k])
assert_equal(d[np.argpartition(d, k)][k], tgt[k])
示例4: argpartition
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def argpartition(a, kth, axis=-1):
"""Returns the indices that would partially sort an array.
Args:
a (cupy.ndarray): Array to be sorted.
kth (int or sequence of ints): Element index to partition by. If
supplied with a sequence of k-th it will partition all elements
indexed by k-th of them into their sorted position at once.
axis (int or None): Axis along which to sort. Default is -1, which
means sort along the last axis. If None is supplied, the array is
flattened before sorting.
Returns:
cupy.ndarray: Array of the same type and shape as ``a``.
.. note::
For its implementation reason, `cupy.argpartition` fully sorts the
given array as `cupy.argsort` does. It also does not support ``kind``
and ``order`` parameters that ``numpy.argpartition`` supports.
.. seealso:: :func:`numpy.argpartition`
"""
return a.argpartition(kth, axis=axis)
示例5: merge_outputs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(self, detections):
results = {}
for i in range(1, self.num_classes + 1):
results[i] = np.concatenate([detection[i] for detection in detections], axis=0).astype(np.float32)
if len(self.scales) > 1 or self.opt.nms:
soft_nms(results[i], Nt=0.5, method=2)
scores = np.hstack([results[i][:,4] for i in range(1, self.num_classes + 1)])
if len(scores) > self.max_per_image:
kth = len(scores) - self.max_per_image
thresh = np.partition(scores, kth)[kth]
for i in range(1, self.num_classes + 1):
keep_inds = (results[i][:, 4] >= thresh)
results[i] = results[i][keep_inds]
return results
示例6: _proba_margin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def _proba_margin(proba: np.ndarray) -> np.ndarray:
"""
Calculates the margin of the prediction probabilities.
Args:
proba: Prediction probabilities.
Returns:
Margin of the prediction probabilities.
"""
if proba.shape[1] == 1:
return np.zeros(shape=len(proba))
part = np.partition(-proba, 1, axis=1)
margin = - part[:, 0] + part[:, 1]
return margin
示例7: classifier_margin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def classifier_margin(classifier: BaseEstimator, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
"""
Classification margin uncertainty of the classifier for the provided samples. This uncertainty measure takes the
first and second most likely predictions and takes the difference of their probabilities, which is the margin.
Args:
classifier: The classifier for which the prediction margin is to be measured.
X: The samples for which the prediction margin of classification is to be measured.
**predict_proba_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier.
Returns:
Margin uncertainty, which is the difference of the probabilities of first and second most likely predictions.
"""
try:
classwise_uncertainty = classifier.predict_proba(X, **predict_proba_kwargs)
except NotFittedError:
return np.zeros(shape=(X.shape[0], ))
if classwise_uncertainty.shape[1] == 1:
return np.zeros(shape=(classwise_uncertainty.shape[0],))
part = np.partition(-classwise_uncertainty, 1, axis=1)
margin = - part[:, 0] + part[:, 1]
return margin
示例8: merge_outputs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(self, detections):
results = {}
for j in range(1, self.num_classes + 1):
results[j] = np.concatenate(
[detection[j] for detection in detections], axis=0).astype(np.float32)
if len(self.scales) > 1 or self.opt.nms:
soft_nms(results[j], Nt=0.5, method=2)
scores = np.hstack(
[results[j][:, 4] for j in range(1, self.num_classes + 1)])
if len(scores) > self.max_per_image:
kth = len(scores) - self.max_per_image
thresh = np.partition(scores, kth)[kth]
for j in range(1, self.num_classes + 1):
keep_inds = (results[j][:, 4] >= thresh)
results[j] = results[j][keep_inds]
return results
示例9: merge_outputs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(detections, num_classes):
# print(detections)
results = {}
max_per_image = 100
for j in range(1, num_classes + 1):
results[j] = np.concatenate(
[detection[j] for detection in detections], axis=0).astype(np.float32)
# if len(self.scales) > 1 or self.opt.nms:
results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01)
# print(results)
scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)])
if len(scores) > max_per_image:
kth = len(scores) - max_per_image
thresh = np.partition(scores, kth)[kth]
for j in range(1, num_classes + 1):
keep_inds = (results[j][:, 4] >= thresh)
results[j] = results[j][keep_inds]
# print("after merge out\n", results)
return results2coco_boxes(results, num_classes)
示例10: merge_outputs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(detections):
# print(detections)
results = {}
max_per_image = 100
for j in range(1, num_classes + 1):
results[j] = np.concatenate(
[detection[j] for detection in detections], axis=0).astype(np.float32)
# if len(self.scales) > 1 or self.opt.nms:
results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.001)
# print(results)
scores = np.hstack(
[results[j][:, 4] for j in range(1, num_classes + 1)])
if len(scores) > max_per_image:
kth = len(scores) - max_per_image
thresh = np.partition(scores, kth)[kth]
for j in range(1, num_classes + 1):
keep_inds = (results[j][:, 4] >= thresh)
results[j] = results[j][keep_inds]
# print("after merge out\n", results)
return results2coco_boxes(results)
示例11: find_threshold
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def find_threshold(self, np_predict, np_target):
# downsample 1/8
factor = self.factor
predict = nd.zoom(np_predict, (1.0, 1.0, 1.0/factor, 1.0/factor), order=1)
target = nd.zoom(np_target, (1.0, 1.0/factor, 1.0/factor), order=0)
n, c, h, w = predict.shape
min_kept = self.min_kept // (factor*factor) #int(self.min_kept_ratio * n * h * w)
input_label = target.ravel().astype(np.int32)
input_prob = np.rollaxis(predict, 1).reshape((c, -1))
valid_flag = input_label != self.ignore_label
valid_inds = np.where(valid_flag)[0]
label = input_label[valid_flag]
num_valid = valid_flag.sum()
if min_kept >= num_valid:
threshold = 1.0
elif num_valid > 0:
prob = input_prob[:,valid_flag]
pred = prob[label, np.arange(len(label), dtype=np.int32)]
threshold = self.thresh
if min_kept > 0:
k_th = min(len(pred), min_kept)-1
new_array = np.partition(pred, k_th)
new_threshold = new_array[k_th]
if new_threshold > self.thresh:
threshold = new_threshold
return threshold
示例12: test_partition_matrix_none
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_partition_matrix_none():
# gh-4301
# 2018-04-29: moved here from core.tests.test_multiarray
a = np.matrix([[2, 1, 0]])
actual = np.partition(a, 1, axis=None)
expected = np.matrix([[0, 1, 2]])
assert_equal(actual, expected)
assert_(type(expected) is np.matrix)
示例13: testPartitionIndicesExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def testPartitionIndicesExecution(self):
# only 1 chunk when axis = -1
raw = np.random.rand(100, 10)
x = tensor(raw, chunk_size=10)
kth = [2, 5, 9]
r = partition(x, kth, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])
x = tensor(raw, chunk_size=(22, 4))
r = partition(x, kth, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])
raw = np.random.rand(100)
x = tensor(raw, chunk_size=23)
r = partition(x, kth, axis=0, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[kth], pr[kth])
示例14: top_proportions_sparse_csr
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def top_proportions_sparse_csr(data, indptr, n):
values = np.zeros((indptr.size - 1, n), dtype=np.float64)
for i in numba.prange(indptr.size - 1):
start, end = indptr[i], indptr[i + 1]
vec = np.zeros(n, dtype=np.float64)
if end - start <= n:
vec[:end - start] = data[start:end]
total = vec.sum()
else:
vec[:] = -(np.partition(-data[start:end], n - 1)[:n])
total = (data[start:end]).sum() # Is this not just vec.sum()?
vec[::-1].sort()
values[i, :] = vec.cumsum() / total
return values
示例15: top_segment_proportions_dense
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def top_segment_proportions_dense(
mtx: Union[np.array, spmatrix], ns: Collection[int]
) -> np.ndarray:
# Currently ns is considered to be 1 indexed
ns = np.sort(ns)
sums = mtx.sum(axis=1)
partitioned = np.apply_along_axis(np.partition, 1, mtx, mtx.shape[1] - ns)[:, ::-1][:, :ns[-1]]
values = np.zeros((mtx.shape[0], len(ns)))
acc = np.zeros((mtx.shape[0]))
prev = 0
for j, n in enumerate(ns):
acc += partitioned[:, prev:n].sum(axis=1)
values[:, j] = acc
prev = n
return values / sums[:, None]