當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.partition方法代碼示例

本文整理匯總了Python中numpy.partition方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.partition方法的具體用法?Python numpy.partition怎麽用?Python numpy.partition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.partition方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_argequivalent

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_argequivalent(self):
        """ Test it translates from arg<func> to <func> """
        from numpy.random import rand
        a = rand(3, 4, 5)

        funcs = [
            (np.sort, np.argsort, dict()),
            (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
            (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
            (np.partition, np.argpartition, dict(kth=2)),
        ]

        for func, argfunc, kwargs in funcs:
            for axis in list(range(a.ndim)) + [None]:
                a_func = func(a, axis=axis, **kwargs)
                ai_func = argfunc(a, axis=axis, **kwargs)
                assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_shape_base.py

示例2: _get_scores

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def _get_scores(self):
        dataset = self.dataset
        self.model.train(dataset)
        unlabeled_entry_ids, X_pool = dataset.get_unlabeled_entries()

        if isinstance(self.model, ProbabilisticModel):
            dvalue = self.model.predict_proba(X_pool)
        elif isinstance(self.model, ContinuousModel):
            dvalue = self.model.predict_real(X_pool)

        if self.method == 'lc':  # least confident
            score = -np.max(dvalue, axis=1)

        elif self.method == 'sm':  # smallest margin
            if np.shape(dvalue)[1] > 2:
                # Find 2 largest decision values
                dvalue = -(np.partition(-dvalue, 2, axis=1)[:, :2])
            score = -np.abs(dvalue[:, 0] - dvalue[:, 1])

        elif self.method == 'entropy':
            score = np.sum(-dvalue * np.log(dvalue), axis=1)
        return zip(unlabeled_entry_ids, score) 
開發者ID:ntucllab,項目名稱:libact,代碼行數:24,代碼來源:uncertainty_sampling.py

示例3: test_partition_cdtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_partition_cdtype(self):
        d = array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
                   ('Lancelot', 1.9, 38)],
                  dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

        tgt = np.sort(d, order=['age', 'height'])
        assert_array_equal(np.partition(d, range(d.size),
                                        order=['age', 'height']),
                           tgt)
        assert_array_equal(d[np.argpartition(d, range(d.size),
                                             order=['age', 'height'])],
                           tgt)
        for k in range(d.size):
            assert_equal(np.partition(d, k, order=['age', 'height'])[k],
                        tgt[k])
            assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
                         tgt[k])

        d = array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
        tgt = np.sort(d)
        assert_array_equal(np.partition(d, range(d.size)), tgt)
        for k in range(d.size):
            assert_equal(np.partition(d, k)[k], tgt[k])
            assert_equal(d[np.argpartition(d, k)][k], tgt[k]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:test_multiarray.py

示例4: argpartition

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def argpartition(a, kth, axis=-1):
    """Returns the indices that would partially sort an array.

    Args:
        a (cupy.ndarray): Array to be sorted.
        kth (int or sequence of ints): Element index to partition by. If
            supplied with a sequence of k-th it will partition all elements
            indexed by k-th of them into their sorted position at once.
        axis (int or None): Axis along which to sort. Default is -1, which
            means sort along the last axis. If None is supplied, the array is
            flattened before sorting.

    Returns:
        cupy.ndarray: Array of the same type and shape as ``a``.

    .. note::
        For its implementation reason, `cupy.argpartition` fully sorts the
        given array as `cupy.argsort` does. It also does not support ``kind``
        and ``order`` parameters that ``numpy.argpartition`` supports.

    .. seealso:: :func:`numpy.argpartition`

    """
    return a.argpartition(kth, axis=axis) 
開發者ID:cupy,項目名稱:cupy,代碼行數:26,代碼來源:sort.py

示例5: merge_outputs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(self, detections):
        results = {}
        for i in range(1, self.num_classes + 1):
            results[i] = np.concatenate([detection[i] for detection in detections], axis=0).astype(np.float32)
            if len(self.scales) > 1 or self.opt.nms:
                soft_nms(results[i], Nt=0.5, method=2)

        scores = np.hstack([results[i][:,4] for i in range(1, self.num_classes + 1)])

        if len(scores) > self.max_per_image:
            kth = len(scores) - self.max_per_image
            thresh = np.partition(scores, kth)[kth]
            for i in range(1, self.num_classes + 1):
                keep_inds = (results[i][:, 4] >= thresh)
                results[i] = results[i][keep_inds]
        return results 
開發者ID:Guanghan,項目名稱:mxnet-centernet,代碼行數:18,代碼來源:center_detector.py

示例6: _proba_margin

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def _proba_margin(proba: np.ndarray) -> np.ndarray:
    """
    Calculates the margin of the prediction probabilities.

    Args:
        proba: Prediction probabilities.

    Returns:
        Margin of the prediction probabilities.
    """

    if proba.shape[1] == 1:
        return np.zeros(shape=len(proba))

    part = np.partition(-proba, 1, axis=1)
    margin = - part[:, 0] + part[:, 1]

    return margin 
開發者ID:modAL-python,項目名稱:modAL,代碼行數:20,代碼來源:uncertainty.py

示例7: classifier_margin

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def classifier_margin(classifier: BaseEstimator, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
    """
    Classification margin uncertainty of the classifier for the provided samples. This uncertainty measure takes the
    first and second most likely predictions and takes the difference of their probabilities, which is the margin.

    Args:
        classifier: The classifier for which the prediction margin is to be measured.
        X: The samples for which the prediction margin of classification is to be measured.
        **predict_proba_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier.

    Returns:
        Margin uncertainty, which is the difference of the probabilities of first and second most likely predictions.
    """
    try:
        classwise_uncertainty = classifier.predict_proba(X, **predict_proba_kwargs)
    except NotFittedError:
        return np.zeros(shape=(X.shape[0], ))

    if classwise_uncertainty.shape[1] == 1:
        return np.zeros(shape=(classwise_uncertainty.shape[0],))

    part = np.partition(-classwise_uncertainty, 1, axis=1)
    margin = - part[:, 0] + part[:, 1]

    return margin 
開發者ID:modAL-python,項目名稱:modAL,代碼行數:27,代碼來源:uncertainty.py

示例8: merge_outputs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(self, detections):
    results = {}
    for j in range(1, self.num_classes + 1):
      results[j] = np.concatenate(
        [detection[j] for detection in detections], axis=0).astype(np.float32)
      if len(self.scales) > 1 or self.opt.nms:
         soft_nms(results[j], Nt=0.5, method=2)
    scores = np.hstack(
      [results[j][:, 4] for j in range(1, self.num_classes + 1)])
    if len(scores) > self.max_per_image:
      kth = len(scores) - self.max_per_image
      thresh = np.partition(scores, kth)[kth]
      for j in range(1, self.num_classes + 1):
        keep_inds = (results[j][:, 4] >= thresh)
        results[j] = results[j][keep_inds]
    return results 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:18,代碼來源:ctdet.py

示例9: merge_outputs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(detections, num_classes):
#     print(detections)
    results = {}
    max_per_image = 100
    for j in range(1, num_classes + 1):
        results[j] = np.concatenate(
            [detection[j] for detection in detections], axis=0).astype(np.float32)
#         if len(self.scales) > 1 or self.opt.nms:
        results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.01)
#         print(results)
    scores = np.hstack([results[j][:, 4] for j in range(1, num_classes + 1)])

    if len(scores) > max_per_image:
        kth = len(scores) - max_per_image
        thresh = np.partition(scores, kth)[kth]
        for j in range(1, num_classes + 1):
            keep_inds = (results[j][:, 4] >= thresh)
            results[j] = results[j][keep_inds]
#     print("after merge out\n", results)
    return results2coco_boxes(results, num_classes) 
開發者ID:lizhe960118,項目名稱:CenterNet,代碼行數:22,代碼來源:matrix_center_head.py

示例10: merge_outputs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def merge_outputs(detections):
#     print(detections)
    results = {}
    max_per_image = 100
    for j in range(1,  num_classes + 1):
        results[j] = np.concatenate(
            [detection[j] for detection in detections], axis=0).astype(np.float32)
#         if len(self.scales) > 1 or self.opt.nms:
        results[j] = soft_nms(results[j], Nt=0.5, method=2, threshold=0.001)
#         print(results)
    scores = np.hstack(
      [results[j][:, 4] for j in range(1, num_classes + 1)])
    if len(scores) > max_per_image:
        kth = len(scores) - max_per_image
        thresh = np.partition(scores, kth)[kth]
        for j in range(1, num_classes + 1):
            keep_inds = (results[j][:, 4] >= thresh)
            results[j] = results[j][keep_inds]
#     print("after merge out\n", results)
    return results2coco_boxes(results) 
開發者ID:lizhe960118,項目名稱:CenterNet,代碼行數:22,代碼來源:ctdet_decetor.py

示例11: find_threshold

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def find_threshold(self, np_predict, np_target):
        # downsample 1/8
        factor = self.factor
        predict = nd.zoom(np_predict, (1.0, 1.0, 1.0/factor, 1.0/factor), order=1)
        target = nd.zoom(np_target, (1.0, 1.0/factor, 1.0/factor), order=0)

        n, c, h, w = predict.shape
        min_kept = self.min_kept // (factor*factor) #int(self.min_kept_ratio * n * h * w)

        input_label = target.ravel().astype(np.int32)
        input_prob = np.rollaxis(predict, 1).reshape((c, -1))

        valid_flag = input_label != self.ignore_label
        valid_inds = np.where(valid_flag)[0]
        label = input_label[valid_flag]
        num_valid = valid_flag.sum()
        if min_kept >= num_valid:
            threshold = 1.0
        elif num_valid > 0:
            prob = input_prob[:,valid_flag]
            pred = prob[label, np.arange(len(label), dtype=np.int32)]
            threshold = self.thresh
            if min_kept > 0:
                k_th = min(len(pred), min_kept)-1
                new_array = np.partition(pred, k_th)
                new_threshold = new_array[k_th]
                if new_threshold > self.thresh:
                    threshold = new_threshold
        return threshold 
開發者ID:speedinghzl,項目名稱:pytorch-segmentation-toolbox,代碼行數:31,代碼來源:loss.py

示例12: test_partition_matrix_none

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def test_partition_matrix_none():
    # gh-4301
    # 2018-04-29: moved here from core.tests.test_multiarray
    a = np.matrix([[2, 1, 0]])
    actual = np.partition(a, 1, axis=None)
    expected = np.matrix([[0, 1, 2]])
    assert_equal(actual, expected)
    assert_(type(expected) is np.matrix) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:10,代碼來源:test_interaction.py

示例13: testPartitionIndicesExecution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def testPartitionIndicesExecution(self):
        # only 1 chunk when axis = -1
        raw = np.random.rand(100, 10)
        x = tensor(raw, chunk_size=10)

        kth = [2, 5, 9]
        r = partition(x, kth, return_index=True)

        pr, pi = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
        np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])

        x = tensor(raw, chunk_size=(22, 4))

        r = partition(x, kth, return_index=True)

        pr, pi = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
        np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])

        raw = np.random.rand(100)

        x = tensor(raw, chunk_size=23)

        r = partition(x, kth, axis=0, return_index=True)

        pr, pi = self.executor.execute_tensors(r)
        np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
        np.testing.assert_array_equal(np.sort(raw)[kth], pr[kth]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:31,代碼來源:test_base_execute.py

示例14: top_proportions_sparse_csr

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def top_proportions_sparse_csr(data, indptr, n):
    values = np.zeros((indptr.size - 1, n), dtype=np.float64)
    for i in numba.prange(indptr.size - 1):
        start, end = indptr[i], indptr[i + 1]
        vec = np.zeros(n, dtype=np.float64)
        if end - start <= n:
            vec[:end - start] = data[start:end]
            total = vec.sum()
        else:
            vec[:] = -(np.partition(-data[start:end], n - 1)[:n])
            total = (data[start:end]).sum()  # Is this not just vec.sum()?
        vec[::-1].sort()
        values[i, :] = vec.cumsum() / total
    return values 
開發者ID:theislab,項目名稱:scanpy,代碼行數:16,代碼來源:_qc.py

示例15: top_segment_proportions_dense

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import partition [as 別名]
def top_segment_proportions_dense(
    mtx: Union[np.array, spmatrix], ns: Collection[int]
) -> np.ndarray:
    # Currently ns is considered to be 1 indexed
    ns = np.sort(ns)
    sums = mtx.sum(axis=1)
    partitioned = np.apply_along_axis(np.partition, 1, mtx, mtx.shape[1] - ns)[:, ::-1][:, :ns[-1]]
    values = np.zeros((mtx.shape[0], len(ns)))
    acc = np.zeros((mtx.shape[0]))
    prev = 0
    for j, n in enumerate(ns):
        acc += partitioned[:, prev:n].sum(axis=1)
        values[:, j] = acc
        prev = n
    return values / sums[:, None] 
開發者ID:theislab,項目名稱:scanpy,代碼行數:17,代碼來源:_qc.py


注:本文中的numpy.partition方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。