本文整理匯總了Python中numpy.ones_like方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ones_like方法的具體用法?Python numpy.ones_like怎麽用?Python numpy.ones_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.ones_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_lr_rfeinman
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
"""
TODO
:param densities_pos:
:param densities_neg:
:param uncerts_pos:
:param uncerts_neg:
:return:
"""
values_neg = np.concatenate(
(densities_neg.reshape((1, -1)),
uncerts_neg.reshape((1, -1))),
axis=0).transpose([1, 0])
values_pos = np.concatenate(
(densities_pos.reshape((1, -1)),
uncerts_pos.reshape((1, -1))),
axis=0).transpose([1, 0])
values = np.concatenate((values_neg, values_pos))
labels = np.concatenate(
(np.zeros_like(densities_neg), np.ones_like(densities_pos)))
lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)
return values, labels, lr
示例2: compute_roc_rfeinman
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
"""
TODO
:param probs_neg:
:param probs_pos:
:param plot:
:return:
"""
probs = np.concatenate((probs_neg, probs_pos))
labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
fpr, tpr, _ = roc_curve(labels, probs)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例3: _transform_col
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def _transform_col(self, x, i):
"""Encode one numerical feature column to quantiles.
Args:
x (pandas.Series): numerical feature column to encode
i (int): column index of the numerical feature
Returns:
Encoded feature (pandas.Series).
"""
# Map values to the emperical CDF between .1% and 99.9%
rv = np.ones_like(x) * -1
filt = ~np.isnan(x)
rv[filt] = np.floor((self.ecdfs[i](x[filt]) * 0.998 + .001) *
self.n_label)
return rv
示例4: test_symmetry
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def test_symmetry(self):
shape = (5, 5)
X = np.arange(shape[0] * shape[1], dtype=float).reshape(*shape)
# symmetry
step = 0
X_ = X.copy()
constraint = scarlet.SymmetryConstraint()
X_ = constraint(X_, step)
new_X = np.ones_like(X) * 12
assert_almost_equal(X_, new_X)
# symmetry at half strength
X_ = X.copy()
constraint = scarlet.SymmetryConstraint(strength=0.5)
X_ = constraint(X_, step)
new_X = [
[6.0, 6.5, 7.0, 7.5, 8.0],
[8.5, 9.0, 9.5, 10.0, 10.5],
[11.0, 11.5, 12.0, 12.5, 13.0],
[13.5, 14.0, 14.5, 15.0, 15.5],
[16.0, 16.5, 17.0, 17.5, 18.0],
]
assert_almost_equal(X_, new_X)
示例5: mask_frozen_ip
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def mask_frozen_ip(eom, vector, kshift, const=LARGE_DENOM):
'''Replaces all frozen orbital indices of `vector` with the value `const`.'''
r1, r2 = eom.vector_to_amplitudes(vector, kshift=kshift)
nkpts = eom.nkpts
nocc, nmo = eom.nocc, eom.nmo
kconserv = eom.kconserv
# Get location of padded elements in occupied and virtual space
nonzero_opadding, nonzero_vpadding = eom.nonzero_opadding, eom.nonzero_vpadding
new_r1 = const * np.ones_like(r1)
new_r2 = const * np.ones_like(r2)
new_r1[nonzero_opadding[kshift]] = r1[nonzero_opadding[kshift]]
for ki in range(nkpts):
for kj in range(nkpts):
kb = kconserv[ki, kshift, kj]
idx = np.ix_([ki], [kj], nonzero_opadding[ki], nonzero_opadding[kj], nonzero_vpadding[kb])
new_r2[idx] = r2[idx]
return eom.amplitudes_to_vector(new_r1, new_r2, kshift, kconserv)
示例6: mask_frozen_ea
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def mask_frozen_ea(eom, vector, kshift, const=LARGE_DENOM):
'''Replaces all frozen orbital indices of `vector` with the value `const`.'''
r1, r2 = eom.vector_to_amplitudes(vector, kshift=kshift)
kconserv = eom.kconserv
nkpts = eom.nkpts
nocc, nmo = eom.nocc, eom.nmo
# Get location of padded elements in occupied and virtual space
nonzero_opadding, nonzero_vpadding = eom.nonzero_opadding, eom.nonzero_vpadding
new_r1 = const * np.ones_like(r1)
new_r2 = const * np.ones_like(r2)
new_r1[nonzero_vpadding[kshift]] = r1[nonzero_vpadding[kshift]]
for kj in range(nkpts):
for ka in range(nkpts):
kb = kconserv[kshift, ka, kj]
idx = np.ix_([kj], [ka], nonzero_opadding[kj], nonzero_vpadding[ka], nonzero_vpadding[kb])
new_r2[idx] = r2[idx]
return eom.amplitudes_to_vector(new_r1, new_r2, kshift, kconserv)
示例7: compute_gradient
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def compute_gradient(self, grad=None):
''' Compute and return the gradient for matrix multiplication.
:param grad: The gradient of other operation wrt the matmul output.
:type grad: number or a ndarray, default value is 1.0.
'''
# Get input values.
x, y = [node.output_value for node in self.input_nodes]
# Default gradient wrt the matmul output.
if grad is None:
grad = np.ones_like(self.output_value)
# Gradients wrt inputs.
dfdx = np.dot(grad, np.transpose(y))
dfdy = np.dot(np.transpose(x), grad)
return [dfdx, dfdy]
示例8: separatePano
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def separatePano(panoImg, fov, x, y, imgSize=320):
'''cut a panorama image into several separate views'''
assert x.shape == y.shape
if not isinstance(fov, np.ndarray):
fov = fov * np.ones_like(x)
sepScene = [
{
'img': imgLookAt(panoImg.copy(), xi, yi, imgSize, fovi),
'vx': xi,
'vy': yi,
'fov': fovi,
'sz': imgSize,
}
for xi, yi, fovi in zip(x, y, fov)
]
return sepScene
示例9: test_2_targets_field_component
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def test_2_targets_field_component(self, optimization_variables_avg):
l, Q, A = optimization_variables_avg
l2 = l[::-1]
l = np.vstack([l ,l2])
m = 2e-3
m1 = 4e-3
x = optimization_methods.optimize_field_component(l, max_el_current=m,
max_total_current=m1)
l_avg = np.average(l, axis=0)
x_sp = optimize_comp(l_avg, np.ones_like(l2), max_el_current=m, max_total_current=m1)
assert np.linalg.norm(x, 1) <= 2 * m1 + 1e-4
assert np.all(np.abs(x) <= m + 1e-6)
assert np.isclose(l_avg.dot(x), l_avg.dot(x_sp),
rtol=1e-4, atol=1e-4)
assert np.isclose(np.sum(x), 0)
示例10: linkage_calculation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def linkage_calculation(self, dist, labels, penalty):
cluster_num = len(self.label_to_images.keys())
start_index = np.zeros(cluster_num,dtype=np.int)
end_index = np.zeros(cluster_num,dtype=np.int)
counts=0
i=0
for key in sorted(self.label_to_images.keys()):
start_index[i] = counts
end_index[i] = counts + len(self.label_to_images[key])
counts = end_index[i]
i=i+1
dist=dist.numpy()
linkages = np.zeros([cluster_num, cluster_num])
for i in range(cluster_num):
for j in range(i, cluster_num):
linkage = dist[start_index[i]:end_index[i], start_index[j]:end_index[j]]
linkages[i,j] = np.average(linkage)
linkages = linkages.T + linkages - linkages * np.eye(cluster_num)
intra = linkages.diagonal()
penalized_linkages = linkages + penalty * ((intra * np.ones_like(linkages)).T + intra).T
return linkages, penalized_linkages
示例11: tforward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def tforward(self, disp0, im, std=None):
self.pattern = self.pattern.to(disp0.device)
self.uv0 = self.uv0.to(disp0.device)
uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
uv1 = torch.empty_like(uv0)
uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
uv1[...,1] = uv0[...,1]
uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
mask = torch.ones_like(im)
if std is not None:
mask = mask*std
diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
val = (mask*diff).sum() / mask.sum()
return val, pattern_proj
示例12: masking_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def masking_data(request):
# Two years, 8 day repeat
x = np.arange(735851, 735851 + 365 * 2, 8)
# Simulate some timeseries in green & swir1
def seasonality(x, amp):
return np.cos(2 * np.pi / 365.25 * x) * amp
green = np.ones_like(x) * 1000 + seasonality(x, 750)
swir1 = np.ones_like(x) * 1250 + seasonality(x, 500)
Y = np.vstack((green, swir1))
# Add in some noise
idx_green_noise = 15
idx_swir1_noise = 30
Y[0, idx_green_noise] = 8000
Y[1, idx_swir1_noise] = 10
return x, Y, np.array([idx_green_noise, idx_swir1_noise])
示例13: im_detect
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def im_detect(rois, scores, bbox_deltas, im_info,
bbox_stds, nms_thresh, conf_thresh):
"""rois (nroi, 4), scores (nrois, nclasses), bbox_deltas (nrois, 4 * nclasses), im_info (3)"""
rois = rois.asnumpy()
scores = scores.asnumpy()
bbox_deltas = bbox_deltas.asnumpy()
im_info = im_info.asnumpy()
height, width, scale = im_info
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas, bbox_stds)
pred_boxes = clip_boxes(pred_boxes, (height, width))
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
# convert to per class detection results
det = []
for j in range(1, scores.shape[-1]):
indexes = np.where(scores[:, j] > conf_thresh)[0]
cls_scores = scores[indexes, j, np.newaxis]
cls_boxes = pred_boxes[indexes, j * 4:(j + 1) * 4]
cls_dets = np.hstack((cls_boxes, cls_scores))
keep = nms(cls_dets, thresh=nms_thresh)
cls_id = np.ones_like(cls_scores) * j
det.append(np.hstack((cls_id, cls_scores, cls_boxes))[keep, :])
# assemble all classes
det = np.concatenate(det, axis=0)
return det
示例14: _debug_save_hardness
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def _debug_save_hardness(self, seed):
out_path = os.path.join(self.logdir, '{:s}_{:d}_hardness.png'.format(self.building_name, seed))
batch_size = 4000
rng = np.random.RandomState(0)
start_node_ids, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists = \
rng_next_goal_rejection_sampling(
None, batch_size, self.task.gtG, rng, self.task_params.max_dist,
self.task_params.min_dist, self.task_params.max_dist,
self.task.sampling_distribution, self.task.target_distribution,
self.task.nodes, self.task_params.n_ori, self.task_params.step_size,
self.task.distribution_bins, self.task.rejection_sampling_M)
bins = self.task.distribution_bins
n_bins = self.task.n_bins
with plt.style.context('ggplot'):
fig, axes = utils.subplot(plt, (1,2), (10,10))
ax = axes[0]
_ = ax.hist(hardnesss, bins=bins, weights=np.ones_like(hardnesss)/len(hardnesss))
ax.plot(bins[:-1]+0.5/n_bins, self.task.target_distribution, 'g')
ax.plot(bins[:-1]+0.5/n_bins, self.task.sampling_distribution, 'b')
ax.grid('on')
ax = axes[1]
_ = ax.hist(gt_dists, bins=np.arange(self.task_params.max_dist+1))
ax.grid('on')
ax.set_title('Mean: {:0.2f}, Median: {:0.2f}'.format(np.mean(gt_dists),
np.median(gt_dists)))
with fu.fopen(out_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
示例15: draw_mask_on_image_array
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ones_like [as 別名]
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
"""Draws mask on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
mask: a float numpy array of shape (img_height, img_height) with
values between 0 and 1
color: color to draw the keypoints with. Default is red.
alpha: transparency value between 0 and 1. (default: 0.7)
Raises:
ValueError: On incorrect data type for image or masks.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if mask.dtype != np.float32:
raise ValueError('`mask` not of type np.float32')
if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
raise ValueError('`mask` elements should be in [0, 1]')
rgb = ImageColor.getrgb(color)
pil_image = Image.fromarray(image)
solid_color = np.expand_dims(
np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
np.copyto(image, np.array(pil_image.convert('RGB')))