本文整理匯總了Python中numpy.object方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.object方法的具體用法?Python numpy.object怎麽用?Python numpy.object使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.object方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _do
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def _do(self, problem, X, **kwargs):
_, n_matings, n_var = X.shape
def fun(mask, operator):
return operator._do(problem, X[..., mask], **kwargs)
ret = apply_mixed_variable_operation(problem, self.process, fun)
# for the crossover the concatenation is different through the 3d arrays.
X = np.full((self.n_offsprings, n_matings, n_var), np.nan, dtype=np.object)
for i in range(len(self.process)):
mask, _X = self.process[i]["mask"], ret[i]
X[..., mask] = _X
return X
示例2: load_cache
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def load_cache(self, cachefile):
"""
Load this Workspace's cache from `cachefile`.
Parameters
----------
cachefile : str
The filename to load the cache from.
Returns
-------
None
"""
with open(cachefile, 'rb') as infile:
enable_plotly_pickling()
oldCache = _pickle.load(infile).cache
disable_plotly_pickling()
for v in oldCache.values():
if isinstance(v, WorkspaceOutput): # hasattr(v,'ws') == True for plotly dicts (why?)
print('Updated {} object to set ws to self'.format(type(v)))
v.ws = self
self.smartCache.cache.update(oldCache)
示例3: add
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def add(self, varname, dependencies):
"""
Adds a new switched-value to this Switchboard.
Parameters
----------
varname : str
A name for the variable being added. This name will be used to
access the new variable (as either a dictionary key or as an
object member).
dependencies : list or tuple
The (0-based) switch-indices specifying which switch positions
the new variable is dependent on. For example, if the Switchboard
has two switches, one for "amplitude" and one for "frequency", and
this value is only dependent on frequency, then `dependencies`
should be set to `(1,)` or `[1]`.
Returns
-------
None
"""
super(Switchboard, self).__setitem__(varname, SwitchValue(self, varname, dependencies))
示例4: add_unswitched
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def add_unswitched(self, varname, value):
"""
Adds a new non-switched-value to this Switchboard.
This can be convenient for attaching related non-switched data to
a :class:`Switchboard`.
Parameters
----------
varname : str
A name for the variable being added. This name will be used to
access the new variable (as either a dictionary key or as an
object member).
value : object
The un-switched value to associate with `varname`.
Returns
-------
None
"""
super(Switchboard, self).__setitem__(varname, value)
示例5: render
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def render(self, typ="html"):
"""
Render this Switchboard into the requested format.
The returned string(s) are intended to be used to embedded a
visualization of this object within a larger document.
Parameters
----------
typ : {"html"}
The format to render as. Currently only HTML is supported.
Returns
-------
dict
A dictionary of strings whose keys indicate which portion of
the embeddable output the value is. Keys will vary for different
`typ`. For `"html"`, keys are `"html"` and `"js"` for HTML and
and Javascript code, respectively.
"""
return self._render_base(typ, None, self.show)
示例6: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def __init__(self, ws, fn, *args):
"""
Create a new WorkspaceTable. Usually not called directly.
Parameters
----------
ws : Workspace
The workspace containing the new object.
fn : function
A table-creating function.
args : various
The arguments to `fn`.
"""
super(WorkspaceTable, self).__init__(ws)
self.tablefn = fn
self.initargs = args
self.tables, self.switchboards, self.sbSwitchIndices, self.switchpos_map = \
self.ws.switchedCompute(self.tablefn, *self.initargs)
示例7: Train
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def Train(self, C, A, Y, SF):
'''
Train the classifier using the sample matrix A and target matrix Y
'''
C.fit(A, Y)
YH = np.zeros(Y.shape, dtype = np.object)
for i in np.array_split(np.arange(A.shape[0]), 32): #Split up verification into chunks to prevent out of memory
YH[i] = C.predict(A[i])
s1 = SF(Y, YH)
print('All:{:8.6f}'.format(s1))
'''
ss = ShuffleSplit(random_state = 1151) #Use fixed state for so training can be repeated later
trn, tst = next(ss.split(A, Y)) #Make train/test split
mi = [8] * 1 #Maximum number of iterations at each iter
YH = np.zeros((A.shape[0]), dtype = np.object)
for mic in mi: #Chunk size to split dataset for CV results
#C.SetMaxIter(mic) #Set the maximum number of iterations to run
#C.fit(A[trn], Y[trn]) #Perform training iterations
'''
示例8: test_constructor_object_dtype
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_constructor_object_dtype(self):
# GH 11856
arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object)
assert arr.dtype == SparseDtype(np.object)
assert np.isnan(arr.fill_value)
arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object,
fill_value='A')
assert arr.dtype == SparseDtype(np.object, 'A')
assert arr.fill_value == 'A'
# GH 17574
data = [False, 0, 100.0, 0.0]
arr = SparseArray(data, dtype=np.object, fill_value=False)
assert arr.dtype == SparseDtype(np.object, False)
assert arr.fill_value is False
arr_expected = np.array(data, dtype=np.object)
it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected))
assert np.fromiter(it, dtype=np.bool).all()
示例9: test_constructor_from_index_dtlike
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_constructor_from_index_dtlike(self, cast_as_obj, index):
if cast_as_obj:
result = pd.Index(index.astype(object))
else:
result = pd.Index(index)
tm.assert_index_equal(result, index)
if isinstance(index, pd.DatetimeIndex):
assert result.tz == index.tz
if cast_as_obj:
# GH#23524 check that Index(dti, dtype=object) does not
# incorrectly raise ValueError, and that nanoseconds are not
# dropped
index += pd.Timedelta(nanoseconds=50)
result = pd.Index(index, dtype=object)
assert result.dtype == np.object_
assert list(result) == list(index)
示例10: test_constructor_from_frame_series_freq
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_constructor_from_frame_series_freq(self):
# GH 6273
# create from a series, passing a freq
dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990']
expected = DatetimeIndex(dts, freq='MS')
df = pd.DataFrame(np.random.rand(5, 3))
df['date'] = dts
result = DatetimeIndex(df['date'], freq='MS')
assert df['date'].dtype == object
expected.name = 'date'
tm.assert_index_equal(result, expected)
expected = pd.Series(dts, name='date')
tm.assert_series_equal(df['date'], expected)
# GH 6274
# infer freq of same
freq = pd.infer_freq(df['date'])
assert freq == 'MS'
示例11: test_copy_name
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_copy_name(self):
# Check that "name" argument passed at initialization is honoured
# GH12309
index = self.create_index()
first = index.__class__(index, copy=True, name='mario')
second = first.__class__(first, copy=False)
# Even though "copy=False", we want a new object.
assert first is not second
tm.assert_index_equal(first, second)
assert first.name == 'mario'
assert second.name == 'mario'
s1 = Series(2, index=first)
s2 = Series(3, index=second[:-1])
s3 = s1 * s2
assert s3.index.name == 'mario'
示例12: test_values
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_values(self):
idx = pd.PeriodIndex([], freq='M')
exp = np.array([], dtype=np.object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.get_values(), exp)
exp = np.array([], dtype=np.int64)
tm.assert_numpy_array_equal(idx._ndarray_values, exp)
idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M')
exp = np.array([pd.Period('2011-01', freq='M'), pd.NaT], dtype=object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.get_values(), exp)
exp = np.array([492, -9223372036854775808], dtype=np.int64)
tm.assert_numpy_array_equal(idx._ndarray_values, exp)
idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D')
exp = np.array([pd.Period('2011-01-01', freq='D'), pd.NaT],
dtype=object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.get_values(), exp)
exp = np.array([14975, -9223372036854775808], dtype=np.int64)
tm.assert_numpy_array_equal(idx._ndarray_values, exp)
示例13: test_insert_index_datetimes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_insert_index_datetimes(self, fill_val, exp_dtype):
obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03',
'2011-01-04'], tz=fill_val.tz)
assert obj.dtype == exp_dtype
exp = pd.DatetimeIndex(['2011-01-01', fill_val.date(), '2011-01-02',
'2011-01-03', '2011-01-04'], tz=fill_val.tz)
self._assert_insert_conversion(obj, fill_val, exp, exp_dtype)
msg = "Passed item and index have different timezone"
if fill_val.tz:
with pytest.raises(ValueError, match=msg):
obj.insert(1, pd.Timestamp('2012-01-01'))
with pytest.raises(ValueError, match=msg):
obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo'))
msg = "cannot insert DatetimeIndex with incompatible label"
with pytest.raises(TypeError, match=msg):
obj.insert(1, 1)
pytest.xfail("ToDo: must coerce to object")
示例14: test_where_object
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_where_object(self, klass, fill_val, exp_dtype):
obj = klass(list('abcd'))
assert obj.dtype == np.object
cond = klass([True, False, True, False])
if fill_val is True and klass is pd.Series:
ret_val = 1
else:
ret_val = fill_val
exp = klass(['a', ret_val, 'c', ret_val])
self._assert_where_conversion(obj, cond, fill_val, exp, exp_dtype)
if fill_val is True:
values = klass([True, False, True, True])
else:
values = klass(fill_val * x for x in [5, 6, 7, 8])
exp = klass(['a', values[1], 'c', values[3]])
self._assert_where_conversion(obj, cond, values, exp, exp_dtype)
示例15: test_where_index_datetimetz
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import object [as 別名]
def test_where_index_datetimetz(self):
fill_val = pd.Timestamp('2012-01-01', tz='US/Eastern')
exp_dtype = np.object
obj = pd.Index([pd.Timestamp('2011-01-01'),
pd.Timestamp('2011-01-02'),
pd.Timestamp('2011-01-03'),
pd.Timestamp('2011-01-04')])
assert obj.dtype == 'datetime64[ns]'
cond = pd.Index([True, False, True, False])
msg = ("Index\\(\\.\\.\\.\\) must be called with a collection "
"of some kind")
with pytest.raises(TypeError, match=msg):
obj.where(cond, fill_val)
values = pd.Index(pd.date_range(fill_val, periods=4))
exp = pd.Index([pd.Timestamp('2011-01-01'),
pd.Timestamp('2012-01-02', tz='US/Eastern'),
pd.Timestamp('2011-01-03'),
pd.Timestamp('2012-01-04', tz='US/Eastern')],
dtype=exp_dtype)
self._assert_where_conversion(obj, cond, values, exp, exp_dtype)