本文整理匯總了Python中numpy.nditer方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.nditer方法的具體用法?Python numpy.nditer怎麽用?Python numpy.nditer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.nditer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_value
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def to_value(self, parent=None):
scale = self.scale.upper().encode('ascii'),
iys, ims, ids, ihmsfs = erfa.d2dtf(scale, self.precision,
self.jd1, self.jd2)
ihrs = ihmsfs['h']
imins = ihmsfs['m']
isecs = ihmsfs['s']
ifracs = ihmsfs['f']
fmt = ('{0:04d} {1:02d} {2:02d} {3:02d} {4:02d} {5:02d} '
'0.{6:0' + str(self.precision) + 'd}')
outs = []
for iy, im, id, ihr, imin, isec, ifracsec in np.nditer(
[iys, ims, ids, ihrs, imins, isecs, ifracs]):
outs.append(fmt.format(int(iy), int(im), int(id), int(ihr),
int(imin), int(isec), int(ifracsec)))
return np.array(outs).reshape(self.jd1.shape)
示例2: _get_bp_indexes_labranchor
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def _get_bp_indexes_labranchor(self, soi):
"""
Get indexes of branch point regions in given sequences.
:param soi: batch of sequences of interest for introns (intron-3..intron+6)
:return: array of predicted bp indexes
"""
encoded = [onehot(str(seq)[self.acc_i - 70:self.acc_i]) for seq in np.nditer(soi)]
labr_in = np.stack(encoded, axis=0)
out = self.labranchor.predict_on_batch(labr_in)
# for each row, pick the base with max branchpoint probability, and get its index
max_indexes = np.apply_along_axis(lambda x: self.acc_i - 70 + np.argmax(x), axis=1, arr=out)
# self.write_bp(max_indexes)
return max_indexes
# TODO boilerplate
# def write_bp(self, max_indexes):
# max_indexes = [str(seq) for seq in np.nditer(max_indexes)]
# with open(''.join([this_dir, "/../customBP/example_files/bp_idx_chr21_labr.txt"]), "a") as bp_idx_file:
# bp_idx_file.write('\n'.join(max_indexes))
# bp_idx_file.write('\n')
# bp_idx_file.close()
示例3: numerical_gradient
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def numerical_gradient(f, x):
h = 1e-4 # 0.0001
grad = np.zeros_like(x)
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
tmp_val = x[idx]
x[idx] = float(tmp_val) + h
fxh1 = f(x) # f(x+h)
x[idx] = tmp_val - h
fxh2 = f(x) # f(x-h)
grad[idx] = (fxh1 - fxh2) / (2 * h)
x[idx] = tmp_val # 還原值
it.iternext()
return grad
示例4: assign_each
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def assign_each(the_input, function):
"""Return ndarray composed of passing each array value through some function"""
if function is None:
output = np.array(the_input)
else:
it_input = np.nditer(the_input, flags=['f_index'])
output = np.zeros(the_input.shape)
it_out = np.nditer(output, flags=['f_index'], op_flags=['writeonly'])
while not it_input.finished:
val_input = it_input[0]
it_out[0] = function(val_input)
it_input.iternext()
it_out.iternext()
return output
示例5: assign_each2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def assign_each2(input1, input2, function):
"""Return ndarray composed of passing two array values through some function"""
if function is None:
output = np.array(input1)
else:
assert input1.shape == input2.shape
it_input1 = np.nditer(input1, flags=['f_index'])
it_input2 = np.nditer(input2, flags=['f_index'])
output = np.zeros(input1.shape)
it_out = np.nditer(output, flags=['f_index'], op_flags=['writeonly'])
while not it_input1.finished:
val_input1 = it_input1[0]
val_input2 = it_input2[0]
it_out[0] = function(val_input1, val_input2)
it_input1.iternext()
it_input2.iternext()
it_out.iternext()
return output
示例6: test_card
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_card(self):
x = Card(5, k=3, M=1)
p = Problem(Maximize(cp.sum(x)),
[x <= 1, x >= 0])
result = p.solve(method="NC-ADMM")
self.assertAlmostEqual(result[0], 3)
for v in np.nditer(x.value):
self.assertAlmostEqual(v*(1-v), 0)
self.assertAlmostEqual(x.value.sum(), 3)
#should be equivalent to x == choose
x = Variable((5, 4))
c = Choose(5, 4, k=4)
b = Boolean(5, 4)
p = Problem(Minimize(sum(1-x) + sum(x)),
[x == c, x == b])
result = p.solve(method="NC-ADMM", solver=CVXOPT)
self.assertAlmostEqual(result[0], 20)
for i in range(x.shape[0]):
for j in range(x.shape[1]):
v = x.value[i, j]
self.assertAlmostEqual(v*(1-v), 0)
# Test permutation variable.
示例7: set_jds
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def set_jds(self, val1, val2):
"""Parse the time strings contained in val1 and set jd1, jd2"""
iterator = np.nditer([val1, None, None, None, None, None, None],
op_dtypes=([val1.dtype] + 5 * [np.intc]
+ [np.double]))
try:
for val, iy, im, id, ihr, imin, dsec in iterator:
timestr = val.item()
components = timestr.split()
iy[...], im[...], id[...], ihr[...], imin[...], sec = (
int(component) for component in components[:-1])
dsec[...] = sec + float(components[-1])
except Exception:
raise ValueError('Time {0} does not match {1} format'
.format(timestr, self.name))
self.jd1, self.jd2 = erfa.dtf2d(
self.scale.upper().encode('utf8'), *iterator.operands[1:])
示例8: test_iter_allocate_output_subtype
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_allocate_output_subtype():
# Make sure that the subtype with priority wins
# 2018-04-29: moved here from core.tests.test_nditer, given the
# matrix specific shape test.
# matrix vs ndarray
a = np.matrix([[1, 2], [3, 4]])
b = np.arange(4).reshape(2, 2).T
i = np.nditer([a, b, None], [],
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
assert_(type(i.operands[2]) is np.matrix)
assert_(type(i.operands[2]) is not np.ndarray)
assert_equal(i.operands[2].shape, (2, 2))
# matrix always wants things to be 2D
b = np.arange(4).reshape(1, 2, 2)
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
# but if subtypes are disabled, the result can still work
i = np.nditer([a, b, None], [],
[['readonly'], ['readonly'],
['writeonly', 'allocate', 'no_subtype']])
assert_(type(i.operands[2]) is np.ndarray)
assert_(type(i.operands[2]) is not np.matrix)
assert_equal(i.operands[2].shape, (1, 2, 2))
示例9: _broadcast_to
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
needs_writeable = not readonly and array.flags.writeable
extras = ['reduce_ok'] if needs_writeable else []
op_flag = 'readwrite' if needs_writeable else 'readonly'
it = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=[op_flag], itershape=shape, order='C')
with it:
# never really has writebackifcopy semantics
broadcast = it.itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
if needs_writeable and not result.flags.writeable:
result.flags.writeable = True
return result
示例10: _broadcast_shape
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def _broadcast_shape(*args):
"""Returns the shape of the arrays that would result from broadcasting the
supplied arrays against each other.
"""
if not args:
return ()
# use the old-iterator because np.nditer does not handle size 0 arrays
# consistently
b = np.broadcast(*args[:32])
# unfortunately, it cannot handle 32 or more arguments directly
for pos in range(32, len(args), 31):
# ironically, np.broadcast does not properly handle np.broadcast
# objects (it treats them as scalars)
# use broadcasting to avoid allocating the full array
b = broadcast_to(0, b.shape)
b = np.broadcast(b, *args[pos:(pos + 31)])
return b.shape
示例11: test_iter_no_inner_dim_coalescing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_no_inner_dim_coalescing():
# Check no_inner iterators whose dimensions may not coalesce completely
# Skipping the last element in a dimension prevents coalescing
# with the next-bigger dimension
a = arange(24).reshape(2, 3, 4)[:,:, :-1]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 2)
assert_equal(i[0].shape, (3,))
a = arange(24).reshape(2, 3, 4)[:, :-1,:]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 2)
assert_equal(i[0].shape, (8,))
a = arange(24).reshape(2, 3, 4)[:-1,:,:]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 1)
assert_equal(i[0].shape, (12,))
# Even with lots of 1-sized dimensions, should still coalesce
a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1)
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 1)
assert_equal(i[0].shape, (24,))
示例12: test_iter_scalar_cast_errors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_scalar_cast_errors():
# Check that invalid casts are caught
# Need to allow copying/buffering for write casts of scalars to occur
assert_raises(TypeError, nditer, np.float32(2), [],
[['readwrite']], op_dtypes=[np.dtype('f8')])
assert_raises(TypeError, nditer, 2.5, [],
[['readwrite']], op_dtypes=[np.dtype('f4')])
# 'f8' -> 'f4' isn't a safe cast if the value would overflow
assert_raises(TypeError, nditer, np.float64(1e60), [],
[['readonly']],
casting='safe',
op_dtypes=[np.dtype('f4')])
# 'f4' -> 'i4' is neither a safe nor a same-kind cast
assert_raises(TypeError, nditer, np.float32(2), [],
[['readonly']],
casting='same_kind',
op_dtypes=[np.dtype('i4')])
示例13: test_iter_op_axes_errors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_op_axes_errors():
# Check that custom axes throws errors for bad inputs
# Wrong number of items in op_axes
a = arange(6).reshape(2, 3)
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0], [1], [0]])
# Out of bounds items in op_axes
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[2, 1], [0, 1]])
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0, 1], [2, -1]])
# Duplicate items in op_axes
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0, 0], [0, 1]])
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0, 1], [1, 1]])
# Different sized arrays in op_axes
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0, 1], [0, 1, 0]])
# Non-broadcastable dimensions in the result
assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
op_axes=[[0, 1], [1, 0]])
示例14: test_iter_allocate_output_types_promotion
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_allocate_output_types_promotion():
# Check type promotion of automatic outputs
i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [],
[['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f8'))
i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [],
[['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f8'))
i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [],
[['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f4'))
i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [],
[['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('u4'))
i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [],
[['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('i8'))
示例15: test_iter_write_buffering
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nditer [as 別名]
def test_iter_write_buffering():
# Test that buffering of writes is working
# F-order swapped array
a = np.arange(24).reshape(2, 3, 4).T.newbyteorder().byteswap()
i = nditer(a, ['buffered'],
[['readwrite', 'nbo', 'aligned']],
casting='equiv',
order='C',
buffersize=16)
x = 0
with i:
while not i.finished:
i[0] = x
x += 1
i.iternext()
assert_equal(a.ravel(order='C'), np.arange(24))