當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ndim方法代碼示例

本文整理匯總了Python中numpy.ndim方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndim方法的具體用法?Python numpy.ndim怎麽用?Python numpy.ndim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.ndim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __repr__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def __repr__(self):
        """x.__repr__() <==> repr(x)."""
        if not hasattr(self, "__repr"):
            params = self.params or {}
            parsed_params = []
            for k, v in params.items():
                sk = str(k)
                if np.ndim(v) != 0 and np.size(v) > MAX_VALUES_TO_REPR:
                    tv = type(v)
                    sv = f"<{tv.__module__}.{tv.__name__}>"
                else:
                    sv = str(v)
                parsed_params.append(f"{sk}={sv}")
            str_params = ", ".join(parsed_params)
            self.__repr = f"{self.name}({str_params})"

        return self.__repr 
開發者ID:quatrope,項目名稱:feets,代碼行數:19,代碼來源:core.py

示例2: augment

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def augment(self, image, isArray=False):
        if isArray: # if the input is a numpy array, convert back to PIL
            image = Image.fromarray(image)
        image = self.transform(image)
        image = np.asarray(image).astype('f')
        w, h = image.shape[0], image.shape[1]
        if np.ndim(image) == 2:
            ch = 1
        else:
            ch = np.shape(image)[2]
        image = image.reshape(w, h, ch)
        image = image.transpose((2, 0, 1))
        if self.scaling == 'none':
            return image 
        elif self.scaling == 'sigmoid':
            return self._scaling_sigmoid(image)
        elif self.scaling == 'tanh':
            return self._scaling_tanh(image)
        else:
            raise NotImplementedError 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:22,代碼來源:dataset_augmentor.py

示例3: rank

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def rank(a):
    """
    Return the number of dimensions of an array.

    .. note::
        This function is deprecated in NumPy 1.9 to avoid confusion with
        `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function
        should be used instead.

    See Also
    --------
    ndim : equivalent non-deprecated function

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in NumPy `ndim` is used instead.
    """
    # 2014-04-12, 1.9
    warnings.warn(
        "`rank` is deprecated; use the `ndim` attribute or function instead. "
        "To find the rank of a matrix see `numpy.linalg.matrix_rank`.",
        VisibleDeprecationWarning, stacklevel=2)
    return ndim(a) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:fromnumeric.py

示例4: _format_scalarmappable_value

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def _format_scalarmappable_value(artist, idx):  # matplotlib/matplotlib#12473.
    data = artist.get_array()[idx]
    if np.ndim(data) == 0:
        if not artist.colorbar:
            fig = Figure()
            ax = fig.subplots()
            artist.colorbar = fig.colorbar(artist, cax=ax)
            # This hack updates the ticks without actually paying the cost of
            # drawing (RendererBase.draw_path raises NotImplementedError).
            try:
                ax.yaxis.draw(RendererBase())
            except NotImplementedError:
                pass
        fmt = artist.colorbar.formatter.format_data_short
        return "[" + _strip_math(fmt(data).strip()) + "]"
    else:
        return artist.format_cursor_data(data)  # Includes brackets. 
開發者ID:anntzer,項目名稱:mplcursors,代碼行數:19,代碼來源:_pick_info.py

示例5: deprocess_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def deprocess_image(x):
    """ Same normalization as in:
    https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
    """
    if np.ndim(x) > 3:
        x = np.squeeze(x)
    # normalize tensor: center on 0., ensure std is 0.1
    x = x - x.mean()
    x = x / (x.std() + 1e-5)
    x = x * 0.1

    # clip to [0, 1]
    x = x + 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x = x * 255
    if K.image_dim_ordering() == 'th':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x 
開發者ID:oarriaga,項目名稱:face_classification,代碼行數:23,代碼來源:grad_cam.py

示例6: compute_gradient

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def compute_gradient(self, grad=None):
        ''' Compute the gradients for this operation wrt input values.

        :param grad: The gradient of other operation wrt the addition output.
        :type grad: number or a ndarray, default value is 1.0.
        '''
        x, y = [node.output_value for node in self.input_nodes]

        if grad is None:
            grad = np.ones_like(self.output_value)

        grad_wrt_x = grad
        while np.ndim(grad_wrt_x) > len(np.shape(x)):
            grad_wrt_x = np.sum(grad_wrt_x, axis=0)
        for axis, size in enumerate(np.shape(x)):
            if size == 1:
                grad_wrt_x = np.sum(grad_wrt_x, axis=axis, keepdims=True)

        grad_wrt_y = grad
        while np.ndim(grad_wrt_y) > len(np.shape(y)):
            grad_wrt_y = np.sum(grad_wrt_y, axis=0)
        for axis, size in enumerate(np.shape(y)):
            if size == 1:
                grad_wrt_y = np.sum(grad_wrt_y, axis=axis, keepdims=True)

        return [grad_wrt_x, grad_wrt_y] 
開發者ID:PytLab,項目名稱:simpleflow,代碼行數:28,代碼來源:operations.py

示例7: tndim

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def tndim(z, x):
  d[z] = numpy.ndim(d[x]) 
開發者ID:google,項目名稱:tangent,代碼行數:4,代碼來源:tangents.py

示例8: flatten_feature

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def flatten_feature(self, feature, value, **kwargs):
        """Convert the features into a dict of 1 dimension values.

        The methods check if the dimension of the value is 1 then a
        dictionary with key the feature name, and the value the value.
        In other cases an recursive approach is taken where every feature
        has as name `feature_<N>` as name, where N is the current dimension.

        Example
        -------

        .. code-block:: pycon

            >>> e.flatten("name", 1)
            {'name': 1}
            >>> e.flatten("name", [1, 2, 3])
            {'name_0': 1, 'name_1': 2, 'name_2': 3}
            >>> e.flatten("name", [1, [2, 3]])
            {'name_0': 1, 'name_1_0': 2, 'name_1_1': 3}
            >>> flatten("name", [[1, 2], [3, 4]])
            {'name_0_0': 1, 'name_0_1': 2, 'name_1_0': 3, 'name_1_1': 4}

        """
        if np.ndim(value) == 0:
            return {feature: value}
        flatten_values = {}
        for idx, v in enumerate(value):
            flatten_name = f"{feature}_{idx}"
            flatten_values.update(
                self.flatten_feature(flatten_name, v, **kwargs)
            )
        return flatten_values 
開發者ID:quatrope,項目名稱:feets,代碼行數:34,代碼來源:core.py

示例9: test_partial_fit_greedy0_r2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_partial_fit_greedy0_r2(self):

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1],
                                 learning_policy=LearningPolicy.EpsilonGreedy(epsilon=0),
                                 neighborhood_policy=NeighborhoodPolicy.Radius(2),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertListEqual(arms, [3, 1])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)

        decisions2 = [1, 2, 3]
        rewards2 = [1, 1, 1]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.partial_fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 13)
        self.assertEqual(len(mab._imp.rewards), 13)
        self.assertEqual(len(mab._imp.contexts), 13)
        self.assertEqual(np.ndim(mab._imp.decisions), 1) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:33,代碼來源:test_radius.py

示例10: test_partial_fit_thompson_thresholds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_partial_fit_thompson_thresholds(self):

        arm_to_threshold = {1: 1, 2: 5, 3: 2, 4: 3}

        def binarize(arm, reward):
            return reward >= arm_to_threshold[arm]

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 7, 0, 1, 9, 0, 2, 6, 11],
                                 learning_policy=LearningPolicy.ThompsonSampling(binarize),
                                 neighborhood_policy=NeighborhoodPolicy.Radius(2),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertTrue(mab._imp.lp.is_contextual_binarized)
        self.assertListEqual(arms, [3, 4])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertTrue(mab._imp.rewards.all() in [0, 1])

        decisions2 = [1, 2, 3]
        rewards2 = [11, 1, 6]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.partial_fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 13)
        self.assertEqual(len(mab._imp.rewards), 13)
        self.assertEqual(len(mab._imp.contexts), 13)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertTrue(mab._imp.rewards.all() in [0, 1]) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:41,代碼來源:test_radius.py

示例11: test_fit_twice_thompson_thresholds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_fit_twice_thompson_thresholds(self):

        arm_to_threshold = {1: 1, 2: 5, 3: 2, 4: 3}

        def binarize(arm, reward):
            return reward >= arm_to_threshold[arm]

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 7, 0, 1, 9, 0, 2, 6, 11],
                                 learning_policy=LearningPolicy.ThompsonSampling(binarize),
                                 neighborhood_policy=NeighborhoodPolicy.Radius(2),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertTrue(mab._imp.lp.is_contextual_binarized)
        self.assertListEqual(arms, [3, 4])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertTrue(mab._imp.rewards.all() in [0, 1])

        decisions2 = [1, 2, 3]
        rewards2 = [11, 1, 6]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 3)
        self.assertEqual(len(mab._imp.rewards), 3)
        self.assertEqual(len(mab._imp.contexts), 3)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertTrue(mab._imp.rewards.all() in [0, 1]) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:41,代碼來源:test_radius.py

示例12: test_partial_fit_thompson_thresholds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_partial_fit_thompson_thresholds(self):

        arm_to_threshold = {1: 1, 2: 5, 3: 2, 4: 3}

        def binarize(arm, reward):
            return reward >= arm_to_threshold[arm]

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 7, 0, 1, 9, 0, 2, 6, 11],
                                 learning_policy=LearningPolicy.ThompsonSampling(binarize),
                                 neighborhood_policy=NeighborhoodPolicy.Clusters(3),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertTrue(mab._imp.lp_list[0].is_contextual_binarized)
        self.assertListEqual(arms, [3, 4])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1])

        decisions2 = [1, 2, 3]
        rewards2 = [11, 1, 6]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.partial_fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 13)
        self.assertEqual(len(mab._imp.rewards), 13)
        self.assertEqual(len(mab._imp.contexts), 13)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1]) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:41,代碼來源:test_clusters.py

示例13: test_fit_twice_thompson_thresholds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_fit_twice_thompson_thresholds(self):

        arm_to_threshold = {1: 1, 2: 5, 3: 2, 4: 3}

        def binarize(arm, reward):
            return reward >= arm_to_threshold[arm]

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 7, 0, 1, 9, 0, 2, 6, 11],
                                 learning_policy=LearningPolicy.ThompsonSampling(binarize),
                                 neighborhood_policy=NeighborhoodPolicy.Clusters(3),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertTrue(mab._imp.lp_list[0].is_contextual_binarized)
        self.assertListEqual(arms, [3, 4])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1])

        decisions2 = [1, 2, 3]
        rewards2 = [11, 1, 6]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 3)
        self.assertEqual(len(mab._imp.rewards), 3)
        self.assertEqual(len(mab._imp.contexts), 3)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1]) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:41,代碼來源:test_clusters.py

示例14: test_partial_fit_greedy0_r2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_partial_fit_greedy0_r2(self):

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1],
                                 learning_policy=LearningPolicy.EpsilonGreedy(epsilon=0),
                                 neighborhood_policy=NeighborhoodPolicy.KNearest(2),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertListEqual(arms, [1, 1])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)

        decisions2 = [1, 2, 3]
        rewards2 = [1, 1, 1]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.partial_fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 13)
        self.assertEqual(len(mab._imp.rewards), 13)
        self.assertEqual(len(mab._imp.contexts), 13)
        self.assertEqual(np.ndim(mab._imp.decisions), 1) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:33,代碼來源:test_nearest.py

示例15: test_partial_fit_thompson_thresholds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndim [as 別名]
def test_partial_fit_thompson_thresholds(self):

        arm_to_threshold = {1: 1, 2: 5, 3: 2, 4: 3}

        def binarize(arm, reward):
            return reward >= arm_to_threshold[arm]

        arms, mab = self.predict(arms=[1, 2, 3, 4],
                                 decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
                                 rewards=[0, 1, 7, 0, 1, 9, 0, 2, 6, 11],
                                 learning_policy=LearningPolicy.ThompsonSampling(binarize),
                                 neighborhood_policy=NeighborhoodPolicy.KNearest(2),
                                 context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0],
                                                  [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0],
                                                  [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3],
                                                  [0, 2, 1, 0, 0]],
                                 contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
                                 seed=123456,
                                 num_run=1,
                                 is_predict=True)

        self.assertTrue(mab._imp.lp.is_contextual_binarized)
        self.assertListEqual(arms, [4, 4])
        self.assertEqual(len(mab._imp.decisions), 10)
        self.assertEqual(len(mab._imp.rewards), 10)
        self.assertEqual(len(mab._imp.contexts), 10)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1])

        decisions2 = [1, 2, 3]
        rewards2 = [11, 1, 6]
        context_history2 = [[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0]]
        mab.partial_fit(decisions2, rewards2, context_history2)

        self.assertEqual(len(mab._imp.decisions), 13)
        self.assertEqual(len(mab._imp.rewards), 13)
        self.assertEqual(len(mab._imp.contexts), 13)
        self.assertEqual(np.ndim(mab._imp.decisions), 1)
        arm = mab.predict([[0, 1, 2, 3, 5]])
        self.assertEqual(arm, 3)
        self.assertListEqual(list(set(mab._imp.rewards)), [0, 1]) 
開發者ID:fidelity,項目名稱:mabwiser,代碼行數:43,代碼來源:test_nearest.py


注:本文中的numpy.ndim方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。