當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ndenumerate方法代碼示例

本文整理匯總了Python中numpy.ndenumerate方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndenumerate方法的具體用法?Python numpy.ndenumerate怎麽用?Python numpy.ndenumerate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.ndenumerate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: hinton

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def hinton(matrix, max_weight=None, ax=None):
    """Draw Hinton diagram for visualizing a weight matrix."""
    ax = ax if ax is not None else plt.gca()

    if not max_weight:
        max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w) / max_weight)
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis() 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:23,代碼來源:plotting.py

示例2: xenumerate

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def xenumerate(arr):
    """
    Multidimensional index iterator for xarray objects

    Return an iterator yielding pairs of array indexers (dicts) and values.

    Parameters
    ----------
    arr : xarray.DataArray
        Input array.

    See Also
    --------
    numpy.ndenumerate
    """

    for index, _ in np.ndenumerate(arr):
        xindex = dict(zip(arr.dims, index))
        yield xindex, arr.isel(**xindex) 
開發者ID:jhamman,項目名稱:scikit-downscale,代碼行數:21,代碼來源:core.py

示例3: draw_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def draw_image(image):
    fig, ax = plt.subplots()
    ax.set_axis_off()
    tb = Table(ax, bbox=[0, 0, 1, 1])

    nrows, ncols = image.shape
    width, height = 1.0 / ncols, 1.0 / nrows

    # Add cells
    for (i, j), val in np.ndenumerate(image):
        tb.add_cell(i, j, width, height, text=val,
                    loc='center', facecolor='white')

        # Row and column labels...
    for i in range(len(image)):
        tb.add_cell(i, -1, width, height, text=i+1, loc='right',
                    edgecolor='none', facecolor='none')
        tb.add_cell(-1, i, width, height/2, text=i+1, loc='center',
                    edgecolor='none', facecolor='none')
    ax.add_table(tb) 
開發者ID:ShangtongZhang,項目名稱:reinforcement-learning-an-introduction,代碼行數:22,代碼來源:grid_world.py

示例4: draw_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def draw_image(image):
    fig, ax = plt.subplots()
    ax.set_axis_off()
    tb = Table(ax, bbox=[0, 0, 1, 1])

    nrows, ncols = image.shape
    width, height = 1.0 / ncols, 1.0 / nrows

    # Add cells
    for (i, j), val in np.ndenumerate(image):
        tb.add_cell(i, j, width, height, text=val,
                    loc='center', facecolor='white')

    # Row and column labels...
    for i in range(len(image)):
        tb.add_cell(i, -1, width, height, text=i+1, loc='right',
                    edgecolor='none', facecolor='none')
        tb.add_cell(-1, i, width, height/2, text=i+1, loc='center',
                    edgecolor='none', facecolor='none')

    ax.add_table(tb) 
開發者ID:ShangtongZhang,項目名稱:reinforcement-learning-an-introduction,代碼行數:23,代碼來源:grid_world.py

示例5: load_flattened

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def load_flattened(self, max_list_elements: int = 24) -> tp.List[tp.Dict[str, tp.Any]]:
        """Loads data from the log file, and splits lists (arrays) into multiple arguments

        Parameters
        ----------
        max_list_elements: int
            Maximum number of elements displayed from the array, each element is given a
            unique id of type list_name#i0_i1_...
        """
        data = self.load()
        flat_data: tp.List[tp.Dict[str, tp.Any]] = []
        for element in data:
            list_keys = {key for key, val in element.items() if isinstance(val, list)}
            flat_data.append({key: val for key, val in element.items() if key not in list_keys})
            for key in list_keys:
                for k, (indices, value) in enumerate(np.ndenumerate(element[key])):
                    if k >= max_list_elements:
                        break
                    flat_data[-1][key + "#" + "_".join(str(i) for i in indices)] = value
        return flat_data 
開發者ID:facebookresearch,項目名稱:nevergrad,代碼行數:22,代碼來源:callbacks.py

示例6: add_outline

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def add_outline(mat: np.ndarray) -> np.ndarray:
    """Pad the matrix"""
    m = np.ones(mat.shape)
    for idx, orig_val in np.ndenumerate(mat):
        x, y = idx
        neighbors = [(x, y + 1), (x + 1, y), (x, y - 1), (x - 1, y)]
        if orig_val == 0:
            m[idx] = 0  # Set the coordinate in the new matrix as 0
            for n_coord in neighbors:
                try:
                    m[n_coord] = 0.5 if mat[n_coord] == 1 else 0
                except IndexError:
                    pass

    m = np.pad(m, mode="constant", pad_width=1, constant_values=1)
    # Let's do a switcheroo, I know this isn't elegant but please feel free to
    # do a PR to make this more efficient!
    m[m == 1] = np.inf
    m[m == 0.5] = 1
    m[m == np.inf] = 0.5

    return m 
開發者ID:ljvmiranda921,項目名稱:seagull,代碼行數:24,代碼來源:CellularSprites.py

示例7: transform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def transform(self, input_: list) -> list:
        """Transform the input text."""
        text_left, text_right = input_
        matching_hist = np.ones((len(text_left), self._hist_bin_size),
                                dtype=np.float32)
        embed_left = self._embedding_matrix[text_left]
        embed_right = self._embedding_matrix[text_right]
        matching_matrix = embed_left.dot(np.transpose(embed_right))
        for (i, j), value in np.ndenumerate(matching_matrix):
            bin_index = int((value + 1.) / 2. * (self._hist_bin_size - 1.))
            matching_hist[i][bin_index] += 1.0
        if self._mode == 'NH':
            matching_sum = matching_hist.sum(axis=1)
            matching_hist = matching_hist / matching_sum[:, np.newaxis]
        elif self._mode == 'LCH':
            matching_hist = np.log(matching_hist)
        return matching_hist.tolist() 
開發者ID:NTMC-Community,項目名稱:MatchZoo-py,代碼行數:19,代碼來源:matching_histogram.py

示例8: test_ndindex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def test_ndindex():
    x = list(np.ndindex(1, 2, 3))
    expected = [ix for ix, e in np.ndenumerate(np.zeros((1, 2, 3)))]
    assert_array_equal(x, expected)

    x = list(np.ndindex((1, 2, 3)))
    assert_array_equal(x, expected)

    # Test use of scalars and tuples
    x = list(np.ndindex((3,)))
    assert_array_equal(x, list(np.ndindex(3)))

    # Make sure size argument is optional
    x = list(np.ndindex())
    assert_equal(x, [()])

    x = list(np.ndindex(()))
    assert_equal(x, [()])

    # Make sure 0-sized ndindex works correctly
    x = list(np.ndindex(*[0]))
    assert_equal(x, []) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:test_index_tricks.py

示例9: reduce_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def reduce_data(self,p_grid,data):
        """reduce data to the domain indicated by p_grid"""
        assert data.shape == p_grid.shape, 'Shape of x and shape of partition vector must match.'
        #get out_shape
        if p_grid.ndim == 1:
            out_shape =(len(numpy.unique(p_grid)), )
        else:
            out = []
            for i in range(p_grid.ndim):
                ind_slice = [0] * p_grid.ndim
                ind_slice[i] = slice(0, p_grid.shape[i])
                out.append(len(numpy.unique(p_grid[ind_slice])))

            # This is doesn't work for dimension >2, the compressed array is not a strip of the domain,
            # but the first element along the axis. It could be an nd array itself.
            #out = [len(numpy.unique(numpy.compress([True], p_grid, axis=i))) for i in range(p_grid.ndim)]
            #out.reverse()   # rows/cols need to be reversed here
            out_shape = tuple(out)
        #reduce
        unique, indices, inverse, counts = numpy.unique(p_grid, return_index=True, return_inverse=True, return_counts=True)
        res = numpy.zeros_like(unique, dtype=float)
        for index, c in numpy.ndenumerate(data.ravel()):   # needs to be flattened for parallel indexing with output of unique
            res[ inverse[index] ] += c
        return numpy.array(res).reshape(out_shape) 
開發者ID:ektelo,項目名稱:ektelo,代碼行數:26,代碼來源:dataset.py

示例10: grad_check_hierarchicalU

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def grad_check_hierarchicalU(self,node,grad_computed,grad_approx,eps,x,y):
        if node.isLeaf == True:
            return
        if node.grad == None:
            return

        theta = node.hActs
        for ij,v in np.ndenumerate(node.hActs):
            tij = theta[ij]
            theta[ij] = tij + eps
            Jplus = self.compute_loss(x,y)
            theta[ij] = tij - eps
            Jminus = self.compute_loss(x, y)
            theta[ij] = tij # reset
            approx = (Jplus - Jminus)/(2*eps)
            grad_computed.append(node.grad[ij])
            grad_approx.append(approx)

        self.grad_check_hierarchicalU(node.left,grad_computed,grad_approx,eps,x,y)
        self.grad_check_hierarchicalU(node.right,grad_computed,grad_approx,eps,x,y) 
開發者ID:PDFangeltop1,項目名稱:cs224d,代碼行數:22,代碼來源:rnnlmWithHierarchicalSoftmax.py

示例11: export_thermal_to_csv

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def export_thermal_to_csv(self, csv_filename):
        """
        Convert thermal data in numpy to json
        :return:
        """

        with open(csv_filename, 'w') as fh:
            writer = csv.writer(fh, delimiter=',')
            writer.writerow(['x', 'y', 'temp (c)'])

            pixel_values = []
            for e in np.ndenumerate(self.thermal_image_np):
                x, y = e[0]
                c = e[1]
                pixel_values.append([x, y, c])

            writer.writerows(pixel_values) 
開發者ID:Nervengift,項目名稱:read_thermal.py,代碼行數:19,代碼來源:flir_image_extractor.py

示例12: calculate_edge_lengths

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def calculate_edge_lengths(G, verbose=True):

    # Calculate the lengths of the edges

    if verbose:
        print('Calculating edge lengths...')

    x = np.matrix(G.nodes.data('x'))[:, 1]
    y = np.matrix(G.nodes.data('y'))[:, 1]

    node_coordinates = np.concatenate([x, y], axis=1)
    node_distances = squareform(pdist(node_coordinates, 'euclidean'))

    adjacency_matrix = np.array(nx.adjacency_matrix(G).todense())
    adjacency_matrix = adjacency_matrix.astype('float')
    adjacency_matrix[adjacency_matrix == 0] = np.nan

    edge_lengths = np.multiply(node_distances, adjacency_matrix)

    edge_attr_dict = {index: v for index, v in np.ndenumerate(edge_lengths) if ~np.isnan(v)}
    nx.set_edge_attributes(G, edge_attr_dict, 'length')

    return G 
開發者ID:baryshnikova-lab,項目名稱:safepy,代碼行數:25,代碼來源:safe_io.py

示例13: hinton

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def hinton(matrix, max_weight=None, ax=None):
    """Draw Hinton diagram for visualizing a weight matrix."""
    ax = ax if ax is not None else plt.gca()

    if not max_weight:
        max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w) / max_weight)
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis()

    return ax 
開發者ID:michtesar,項目名稱:color_recognizer,代碼行數:25,代碼來源:hinton.py

示例14: _flatten_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def _flatten_data(data, chart_cfg, switch_zy=False):
        plot_axes_def = [(0, XAxis), (1, YAxis)]

        # Inject categories into the axis definitions of the plot
        if isinstance(data, NDFrame):
            for i, plot_axis in plot_axes_def[:data.ndim]:
                categories = data.axes[i]
                # Skip numeric indices
                if not categories.is_numeric():
                    chart_cfg = chart_cfg.inherit_many(plot_axis(categories=list(categories)))

        data = [list(index) + [value] for index, value in list(np.ndenumerate(data))]

        if switch_zy:
            for i in range(len(data)):
                tmp = data[i][-1]
                data[i][-1] = data[i][-2]
                data[i][-2] = tmp

        return data, chart_cfg 
開發者ID:man-group,項目名稱:PyBloqs,代碼行數:22,代碼來源:core.py

示例15: generateDistanceMatrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndenumerate [as 別名]
def generateDistanceMatrix(width, height):
	"""
	Generates a matrix specifying the distance of each point in a window to its centre.
	"""
	
	# Determine the coordinates of the exact centre of the window
	originX = width / 2
	originY = height / 2
	
	# Generate the distance matrix
	distances = zerosFactory((height,width), dtype=np.float)
	for index, val in np.ndenumerate(distances):
		y,x = index
		distances[(y,x)] = math.sqrt( math.pow(x - originX, 2) + math.pow(y - originY, 2) )
	
	return distances 
開發者ID:PINTO0309,項目名稱:MobileNetV2-PoseEstimation,代碼行數:18,代碼來源:WindowDistance.py


注:本文中的numpy.ndenumerate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。