當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.ndarry方法代碼示例

本文整理匯總了Python中numpy.ndarry方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndarry方法的具體用法?Python numpy.ndarry怎麽用?Python numpy.ndarry使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.ndarry方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_actions_given_tasks

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def get_actions_given_tasks(self, observations, task_ids):
        """Sample a batch of actions given observations and task ids.

        Args:
            observations (np.ndarray): Observations from the environment, with
                shape :math:`(T, O)`. T is the number of environment steps,
                O is the dimension of observation.
            task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`.
                T is the number of environment steps, N is the number of tasks.

        Returns:
            np.ndarray: Actions sampled from the policy,
                with shape :math:`(T, A)`. T is the number of environment
                steps, A is the dimension of action.
            dict: Action distribution information, , with keys:
                - mean (numpy.ndarray): Mean of the distribution,
                    with shape :math:`(T, A)`. T is the number of
                    environment steps. A is the dimension of action.
                - log_std (numpy.ndarray): Log standard deviation of the
                    distribution, with shape :math:`(T, A)`. T is the number of
                    environment steps. A is the dimension of action.

        """
        flat_obses = self.observation_space.flatten_n(observations)
        flat_obses = np.expand_dims(flat_obses, 1)
        task_ids = np.expand_dims(task_ids, 1)

        samples, means, log_stds = self._f_dist_obs_task(flat_obses, task_ids)
        samples = self.action_space.unflatten_n(np.squeeze(samples, 1))
        means = self.action_space.unflatten_n(np.squeeze(means, 1))
        log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1))
        return samples, dict(mean=means, log_std=log_stds) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:34,代碼來源:gaussian_mlp_task_embedding_policy.py

示例2: _polynomial_expansion

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def _polynomial_expansion(self, summary_statistics):
        """Helper function that does the polynomial expansion and includes cross-product
        terms of summary_statistics, already calculated summary statistics.

        Parameters
        ----------
        summary_statistics: numpy.ndarray
            nxp matrix where n is number of data points in the datasets data set and p number os
            summary statistics calculated.
        Returns
        -------
        numpy.ndarray
            nx(p+degree*p+cross*nchoosek(p,2)) matrix where for each of the n pointss with
            p statistics, degree*p polynomial expansion term and cross*nchoosek(p,2) many
            cross-product terms are calculated.

        """

        # Check summary_statistics is a np.ndarry
        if not isinstance(summary_statistics, np.ndarray):
            raise TypeError('Summary statistics is not of allowed types')
        # Include the polynomial expansion
        result = summary_statistics
        for ind in range(2, self.degree + 1):
            result = np.column_stack((result, np.power(summary_statistics, ind)))

        # Include the cross-product term
        if self.cross == True and summary_statistics.shape[1] > 1:
            # Convert to a matrix
            for ind1 in range(0, summary_statistics.shape[1]):
                for ind2 in range(ind1 + 1, summary_statistics.shape[1]):
                    result = np.column_stack((result, summary_statistics[:, ind1] * summary_statistics[:, ind2]))
        return result 
開發者ID:eth-cscs,項目名稱:abcpy,代碼行數:35,代碼來源:statistics.py

示例3: load_data_wrapper

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def load_data_wrapper():
	"""Return a tuple containing ``(training_data, validation_data,
	test_data)``. Based on ``load_data``, but the format is more
	convenient for use in our implementation of neural networks.

	In particular, ``training_data`` is a list containing 50,000
	2-tuples ``(x, y)``.  ``x`` is a 784-dimensional numpy.ndarray
	containing the input image.  ``y`` is a 10-dimensional
	numpy.ndarray representing the unit vector corresponding to the
	correct digit for ``x``.

	``validation_data`` and ``test_data`` are lists containing 10,000
	2-tuples ``(x, y)``.  In each case, ``x`` is a 784-dimensional
	numpy.ndarry containing the input image, and ``y`` is the
	corresponding classification, i.e., the digit values (integers)
	corresponding to ``x``.

	Obviously, this means we're using slightly different formats for
	the training data and the validation / test data.  These formats
	turn out to be the most convenient for use in our neural network
	code."""
	tr_d, va_d, te_d = load_data()
	print("Shape of training data",tr_d.shape)

	training_inputs = [np.reshape(x, (1024, 1)) for x in tr_d[0]]
	training_results = [vectorized_result(y) for y in tr_d[1]]
	training_data = zip(training_inputs, training_results)

	validation_inputs = [np.reshape(x, (1024, 1)) for x in va_d[0]]
	validation_data = zip(validation_inputs, va_d[1])

	test_inputs = [np.reshape(x, (1024, 1)) for x in te_d[0]]
	test_data = zip(test_inputs, te_d[1])

	return (training_data, validation_data, test_data) 
開發者ID:ishita27,項目名稱:Printed-Text-recognition-and-conversion,代碼行數:37,代碼來源:mnist_loader.py

示例4: k_means

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def k_means(points: np.ndarray):
    """返回一個數組經kmeans分類後的k值以及標簽,k值由計算拐點給出

    Args:
        points (np.ndarray): 需分類數據

    Returns:
        Tuple[int, np.ndarry]: k值以及標簽數組
    """

    # Define criteria = ( type, max_iter = 10 , epsilon = 1.0 )
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)

    # Set flags (Just to avoid line break in the code)
    flags = cv2.KMEANS_RANDOM_CENTERS
    length = []
    max_k = min(10, points.shape[0])
    for k in range(2, max_k + 1):
        avg = 0
        for i in range(5):
            compactness, _, _ = cv2.kmeans(
                points, k, None, criteria, 10, flags)
            avg += compactness
        avg /= 5
        length.append(avg)

    peek_pos = find_peek(length)
    k = peek_pos + 2
    # print(k)
    return k, cv2.kmeans(points, k, None, criteria, 10, flags)[1]  # labels 
開發者ID:zhaobenx,項目名稱:Image-stitcher,代碼行數:32,代碼來源:k_means.py

示例5: con2R

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def con2R(arr):
    """
    Convert user desired contrasts to R-flavored contrast matrix that can be passed directly to lm(). Reference: https://goo.gl/E4Mms2

    Args:
        arr (np.ndarry): 2d numpy array arranged as contrasts X factor levels

    Returns:
        np.ndarray: 2d contrast matrix as expected by R's contrasts() function
    """

    intercept = np.repeat(1.0 / arr.shape[1], arr.shape[1])
    mat = np.vstack([intercept, arr])
    inv = np.linalg.inv(mat)[:, 1:]
    return inv 
開發者ID:ejolly,項目名稱:pymer4,代碼行數:17,代碼來源:utils.py

示例6: R2con

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def R2con(arr):
    """
    Convert R-flavored contrast matrix to intepretable contrasts as would be specified by user. Reference: https://goo.gl/E4Mms2

    Args:
        arr (np.ndarry): 2d contrast matrix output from R's contrasts() function.

    Returns:
        np.ndarray: 2d array organized as contrasts X factor levels
    """

    intercept = np.ones((arr.shape[0], 1))
    mat = np.column_stack([intercept, arr])
    inv = np.linalg.inv(mat)
    return inv 
開發者ID:ejolly,項目名稱:pymer4,代碼行數:17,代碼來源:utils.py

示例7: set_regular_grid

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def set_regular_grid(self, extent, resolution):
        """
        Set a regular grid into the values parameters for further computations
        Args:
             extent (list, np.ndarry):  [x_min, x_max, y_min, y_max, z_min, z_max]
            resolution (list, np.ndarray): [nx, ny, nz]
        """

        self.extent = np.asarray(extent, dtype='float64')
        self.resolution = np.asarray(resolution)
        self.values = self.create_regular_grid_3d(extent, resolution)
        self.length = self.values.shape[0]
        self.dx, self.dy, self.dz = self.get_dx_dy_dz()
        return self.values 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:16,代碼來源:grid_types.py

示例8: __slim_tcr_decomposition

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def __slim_tcr_decomposition(super_core, threshold):
    """
    Two-cell reaction decomposition.

    Decompose a super-core representing the interactions between two cells.

    Parameters
    ----------
    super_core : np.ndarray
        tensor with order 4
    threshold : float
            threshold for reduced SVD decompositions

    Returns
    -------
    core_left : np.ndarray
        TT core for first cell
    core_right : np.ndarry
        TT core for second cell
    rank : int
        TT rank
    """

    # number of states
    dimension_1 = super_core.shape[0]
    dimension_2 = super_core.shape[2]

    # apply SVD in order to split the super-core
    [u, s, v] = linalg.svd(super_core.reshape(dimension_1 ** 2, dimension_2 ** 2),
                           full_matrices=False, overwrite_a=True, check_finite=False, lapack_driver='gesvd')

    # rank reduction
    if threshold != 0:
        indices = np.where(s / s[0] > threshold)[0]
        u = u[:, indices]
        s = s[indices]
        v = v[indices, :]

    # set quantities for decomposition
    rank = u.shape[1]
    core_left = (u.dot(np.diag(s))).reshape(dimension_1, dimension_1, rank)
    core_right = v.reshape(rank, dimension_2, dimension_2)
    return core_left, core_right, rank 
開發者ID:PGelss,項目名稱:scikit_tt,代碼行數:45,代碼來源:slim.py

示例9: ao2mo

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ndarry [as 別名]
def ao2mo(mat, coeffs, MOrange=None, MOrangei=None, MOrangej=None, MOrangek=None, MOrangel=None):
  '''Transforms array of one- or two-electron integrals from AO to MO basis.

  **Parameters:**

  mat : 2 or 4 dimensional numpy.ndarray
    integrals to be transformed
  coeffs : 2 dimensional numpy.ndarry
    MO coefficients
  MOrangei, MOrangej, MOrangek, MOrangel : list|range object|None
    Only transform selected MOs for indices i, j, k and l respectively.
  MOrange: list or range object or None
    Set same range for all indices.

  **Returns:**

  numpy.ndarray

  '''
  assert len(mat.shape) in (2, 4), "'mat' musst be of size 2 or 4."

  if MOrange is not None:
    MOrangei = MOrange
    MOrangej = MOrange
    MOrangek = MOrange
    MOrangel = MOrange
  if MOrangei is None:
    MOrangei = range(coeffs.shape[0])
  if MOrangej is None:
    MOrangej = range(coeffs.shape[0])
  if MOrangek is None:
    MOrangek = range(coeffs.shape[0])
  if MOrangel is None:
    MOrangel = range(coeffs.shape[0])

  # discard zero columns in MO coeffs
  if len(mat.shape) == 2:
    MOs = list(set(chain(MOrangei, MOrangej)))
  elif len(mat.shape) == 4:
    MOs = list(set(chain(MOrangei, MOrangej, MOrangek, MOrangel)))
  AOs = numpy.where(~numpy.isclose(coeffs[MOs,:], 1e-15).all(axis=0))[0]
  coeffs = coeffs[:,AOs]

  if len(mat.shape) == 2:
    # 1-electron integrals
    mat = mat[numpy.ix_(AOs, AOs)]
    return numpy.dot(coeffs[MOrangei,:], numpy.dot(mat, coeffs[MOrangej,:].T))
  elif len(mat.shape) == 4:
    # 2-electron integrals
    mat = mat[numpy.ix_(AOs, AOs, AOs, AOs)]
    mat = numpy.tensordot(mat, coeffs[MOrangei,:], axes=(0, 1))
    mat = numpy.tensordot(mat, coeffs[MOrangej,:], axes=(0, 1))
    mat = numpy.tensordot(mat, coeffs[MOrangek,:], axes=(0, 1))
    mat = numpy.tensordot(mat, coeffs[MOrangel,:], axes=(0, 1))
    return mat 
開發者ID:orbkit,項目名稱:orbkit,代碼行數:57,代碼來源:ao_integrals.py


注:本文中的numpy.ndarry方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。