本文整理匯總了Python中numpy.ndarray.__new__方法的典型用法代碼示例。如果您正苦於以下問題:Python ndarray.__new__方法的具體用法?Python ndarray.__new__怎麽用?Python ndarray.__new__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ndarray
的用法示例。
在下文中一共展示了ndarray.__new__方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __new__
# 需要導入模塊: from numpy import ndarray [as 別名]
# 或者: from numpy.ndarray import __new__ [as 別名]
def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
hardmask=False, copy=False, subok=True):
_data = np.array(data, copy=copy, subok=subok, dtype=dtype)
_data = _data.view(self)
_data._hardmask = hardmask
if mask is not nomask:
if isinstance(mask, np.void):
_data._mask = mask
else:
try:
# Mask is already a 0D array
_data._mask = np.void(mask)
except TypeError:
# Transform the mask to a void
mdtype = make_mask_descr(dtype)
_data._mask = np.array(mask, dtype=mdtype)[()]
if fill_value is not None:
_data.fill_value = fill_value
return _data
示例2: __deepcopy__
# 需要導入模塊: from numpy import ndarray [as 別名]
# 或者: from numpy.ndarray import __new__ [as 別名]
def __deepcopy__(self, memo=None):
from copy import deepcopy
copied = MaskedArray.__new__(type(self), self, copy=True)
if memo is None:
memo = {}
memo[id(self)] = copied
for (k, v) in self.__dict__.items():
copied.__dict__[k] = deepcopy(v, memo)
return copied
示例3: _mareconstruct
# 需要導入模塊: from numpy import ndarray [as 別名]
# 或者: from numpy.ndarray import __new__ [as 別名]
def _mareconstruct(subtype, baseclass, baseshape, basetype,):
"""Internal function that builds a new MaskedArray from the
information stored in a pickle.
"""
_data = ndarray.__new__(baseclass, baseshape, basetype)
_mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype))
return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
示例4: __new__
# 需要導入模塊: from numpy import ndarray [as 別名]
# 或者: from numpy.ndarray import __new__ [as 別名]
def __new__(cls,
values,
missing_value,
categories=None,
sort=True):
# Numpy's fixed-width string types aren't very efficient. Working with
# object arrays is faster than bytes or unicode arrays in almost all
# cases.
if not is_object(values):
values = values.astype(object)
if categories is None:
codes, categories, reverse_categories = factorize_strings(
values.ravel(),
missing_value=missing_value,
sort=sort,
)
else:
codes, categories, reverse_categories = (
factorize_strings_known_categories(
values.ravel(),
categories=categories,
missing_value=missing_value,
sort=sort,
)
)
categories.setflags(write=False)
return cls.from_codes_and_metadata(
codes=codes.reshape(values.shape),
categories=categories,
reverse_categories=reverse_categories,
missing_value=missing_value,
)
示例5: __array_finalize__
# 需要導入模塊: from numpy import ndarray [as 別名]
# 或者: from numpy.ndarray import __new__ [as 別名]
def __array_finalize__(self, obj):
"""
Called by Numpy after array construction.
There are three cases where this can happen:
1. Someone tries to directly construct a new array by doing::
>>> ndarray.__new__(LabelArray, ...) # doctest: +SKIP
In this case, obj will be None. We treat this as an error case and
fail.
2. Someone (most likely our own __new__) does::
>>> other_array.view(type=LabelArray) # doctest: +SKIP
In this case, `self` will be the new LabelArray instance, and
``obj` will be the array on which ``view`` is being called.
The caller of ``obj.view`` is responsible for setting category
metadata on ``self`` after we exit.
3. Someone creates a new LabelArray by slicing an existing one.
In this case, ``obj`` will be the original LabelArray. We're
responsible for copying over the parent array's category metadata.
"""
if obj is None:
raise TypeError(
"Direct construction of LabelArrays is not supported."
)
# See docstring for an explanation of when these will or will not be
# set.
self._categories = getattr(obj, 'categories', None)
self._reverse_categories = getattr(obj, 'reverse_categories', None)
self._missing_value = getattr(obj, 'missing_value', None)