當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.nanstd方法代碼示例

本文整理匯總了Python中numpy.nanstd方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.nanstd方法的具體用法?Python numpy.nanstd怎麽用?Python numpy.nanstd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.nanstd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dtype_from_dtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def test_dtype_from_dtype(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
                    assert_(res is tgt) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_nanfunctions.py

示例2: test_dtype_from_char

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def test_dtype_from_char(self):
        mat = np.eye(3)
        codes = 'efdgFDG'
        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
            for c in codes:
                with suppress_warnings() as sup:
                    if nf in {np.nanstd, np.nanvar} and c in 'FDG':
                        # Giving the warning is a small bug, see gh-8000
                        sup.filter(np.ComplexWarning)
                    tgt = rf(mat, dtype=c, axis=1).dtype.type
                    res = nf(mat, dtype=c, axis=1).dtype.type
                    assert_(res is tgt)
                    # scalar case
                    tgt = rf(mat, dtype=c, axis=None).dtype.type
                    res = nf(mat, dtype=c, axis=None).dtype.type
                    assert_(res is tgt) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_nanfunctions.py

示例3: test_ddof_too_big

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with suppress_warnings() as sup:
                    sup.record(RuntimeWarning)
                    sup.filter(np.ComplexWarning)
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(sup.log) == 1)
                    else:
                        assert_(len(sup.log) == 0) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:test_nanfunctions.py

示例4: test_ddof_too_big

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:test_nanfunctions.py

示例5: compute_mean_metrics

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def compute_mean_metrics(json_folder, compute_averages=True):
    files = glob.glob(os.path.join(json_folder, "*.json"))
    sdr_inst_list = None
    for path in files:
        #print(path)
        with open(path, "r") as f:
            js = json.load(f)

        if sdr_inst_list is None:
            sdr_inst_list = [list() for _ in range(len(js["targets"]))]

        for i in range(len(js["targets"])):
            sdr_inst_list[i].extend([np.float(f['metrics']["SDR"]) for f in js["targets"][i]["frames"]])

    #return np.array(sdr_acc), np.array(sdr_voc)
    sdr_inst_list = [np.array(sdr) for sdr in sdr_inst_list]

    if compute_averages:
        return [(np.nanmedian(sdr), np.nanmedian(np.abs(sdr - np.nanmedian(sdr))), np.nanmean(sdr), np.nanstd(sdr)) for sdr in sdr_inst_list]
    else:
        return sdr_inst_list 
開發者ID:Veleslavia,項目名稱:vimss,代碼行數:23,代碼來源:Evaluate.py

示例6: _compute_scores_general

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def _compute_scores_general(df_experiments, df_expt_robust):
    # parse specific metrics
    scores = {
        'Average-Robustness': np.mean(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
        'STD-Robustness': np.std(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
        'Median-Robustness': np.median(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
        'Average-Rank-Median-rTRE': np.nan,
        'Average-Rank-Max-rTRE': np.nan,
    }
    # parse Mean & median specific measures
    for name, col in [('Median-rTRE', 'rTRE Median'),
                      ('Max-rTRE', 'rTRE Max'),
                      ('Average-rTRE', 'rTRE Mean'),
                      ('Norm-Time', COL_NORM_TIME)]:
        for df, sufix in [(df_experiments, ''), (df_expt_robust, '-Robust')]:
            scores['Average-' + name + sufix] = np.nanmean(df[col])
            scores['STD-' + name + sufix] = np.nanstd(df[col])
            scores['Median-' + name + sufix] = np.median(df[col])
    return scores 
開發者ID:Borda,項目名稱:BIRL,代碼行數:21,代碼來源:evaluate_submission.py

示例7: nanstd

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    """Returns the standard deviation along an axis ignoring NaN values.

    Args:
        a (cupy.ndarray): Array to compute standard deviation.
        axis (int): Along which axis to compute standard deviation. The
            flattened array is used by default.
        dtype: Data type specifier.
        out (cupy.ndarray): Output array.
        keepdims (bool): If ``True``, the axis is remained as an axis of
            size one.

    Returns:
        cupy.ndarray: The standard deviation of the input array along the axis.

    .. seealso:: :func:`numpy.nanstd`

    """
    if a.dtype.kind in 'biu':
        return a.std(axis=axis, dtype=dtype, out=out, ddof=ddof,
                     keepdims=keepdims)

    # TODO(okuta): check type
    return _statistics._nanstd(
        a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) 
開發者ID:cupy,項目名稱:cupy,代碼行數:27,代碼來源:meanvar.py

示例8: calculate_surface_statistics

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def calculate_surface_statistics(
    realdf, ensemble, surfacefile, surfacefolder
) -> io.BytesIO:
    fns = [
        os.path.join(real_path, surfacefolder, surfacefile)
        for real_path in list(realdf[realdf["ENSEMBLE"] == ensemble]["RUNPATH"])
    ]
    surfaces = get_surfaces(fns)
    return io.BytesIO(
        json.dumps(
            {
                "mean": surface_to_json(surfaces.apply(np.nanmean, axis=0)),
                "maximum": surface_to_json(surfaces.apply(np.nanmax, axis=0)),
                "minimum": surface_to_json(surfaces.apply(np.nanmin, axis=0)),
                "p10": surface_to_json(surfaces.apply(np.nanpercentile, 10, axis=0)),
                "p90": surface_to_json(surfaces.apply(np.nanpercentile, 90, axis=0)),
                "stddev": surface_to_json(surfaces.apply(np.nanstd, axis=0)),
            }
        ).encode()
    ) 
開發者ID:equinor,項目名稱:webviz-subsurface,代碼行數:22,代碼來源:_well_cross_section_fmu.py

示例9: calc_statistics

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def calc_statistics(df):
    # Switched P10 and P90 due to convention in petroleum industry
    def p10(x):
        return np.nanpercentile(x, q=90)

    def p90(x):
        return np.nanpercentile(x, q=10)

    stat_dfs = []
    for ens, ens_df in df.groupby("ENSEMBLE"):
        stat_dfs.append(
            ens_df.drop(columns=["REAL", "ENSEMBLE"])
            .groupby("DATE", as_index=False)
            .agg([np.nanmean, np.nanstd, np.nanmin, np.nanmax, p10, p90])
            .reset_index()
            .assign(ENSEMBLE=ens)
        )
    return pd.concat(stat_dfs) 
開發者ID:equinor,項目名稱:webviz-subsurface,代碼行數:20,代碼來源:_reservoir_simulation_timeseries_regional.py

示例10: save_surface

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def save_surface(fns, statistic) -> io.BytesIO:
    surfaces = xtgeo.Surfaces(fns)
    if len(surfaces.surfaces) == 0:
        surface = xtgeo.RegularSurface()
    elif statistic == "Mean":
        surface = surfaces.apply(np.nanmean, axis=0)
    elif statistic == "StdDev":
        surface = surfaces.apply(np.nanstd, axis=0)
    elif statistic == "Min":
        surface = surfaces.apply(np.nanmin, axis=0)
    elif statistic == "Max":
        surface = surfaces.apply(np.nanmax, axis=0)
    elif statistic == "P10":
        surface = surfaces.apply(np.nanpercentile, 10, axis=0)
    elif statistic == "P90":
        surface = surfaces.apply(np.nanpercentile, 90, axis=0)
    else:
        surface = xtgeo.RegularSurface()
    return io.BytesIO(surface_to_json(surface).encode()) 
開發者ID:equinor,項目名稱:webviz-subsurface,代碼行數:21,代碼來源:_surface_viewer_fmu.py

示例11: _ecg_rsa_p2t

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def _ecg_rsa_p2t(rsp_onsets, rpeaks, sampling_rate, continuous=False, ecg_period=None, rsp_peaks=None):
    """Peak-to-trough algorithm (P2T)"""

    # Find all RSP cycles and the Rpeaks within
    cycles_rri = []
    for idx in range(len(rsp_onsets) - 1):
        cycle_init = rsp_onsets[idx]
        cycle_end = rsp_onsets[idx + 1]
        cycles_rri.append(rpeaks[np.logical_and(rpeaks >= cycle_init, rpeaks < cycle_end)])

    # Iterate over all cycles
    rsa_values = np.full(len(cycles_rri), np.nan)
    for i, cycle in enumerate(cycles_rri):
        # Estimate of RSA during each breath
        RRis = np.diff(cycle) / sampling_rate
        if len(RRis) > 1:
            rsa_values[i] = np.max(RRis) - np.min(RRis)

    if continuous is False:
        rsa = {"RSA_P2T_Mean": np.nanmean(rsa_values)}
        rsa["RSA_P2T_Mean_log"] = np.log(rsa["RSA_P2T_Mean"])  # pylint: disable=E1111
        rsa["RSA_P2T_SD"] = np.nanstd(rsa_values, ddof=1)
        rsa["RSA_P2T_NoRSA"] = len(pd.Series(rsa_values).index[pd.Series(rsa_values).isnull()])
    else:
        rsa = signal_interpolate(
            x_values=rsp_peaks[~np.isnan(rsa_values)],
            y_values=rsa_values[~np.isnan(rsa_values)],
            x_new=np.arange(len(ecg_period)),
        )

    return rsa 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:33,代碼來源:ecg_rsa.py

示例12: _rsp_rrv_time

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def _rsp_rrv_time(bbi):
    diff_bbi = np.diff(bbi)
    out = {}  # Initialize empty dict

    # Mean based
    out["RMSSD"] = np.sqrt(np.mean(diff_bbi ** 2))

    out["MeanBB"] = np.nanmean(bbi)
    out["SDBB"] = np.nanstd(bbi, ddof=1)
    out["SDSD"] = np.nanstd(diff_bbi, ddof=1)

    out["CVBB"] = out["SDBB"] / out["MeanBB"]
    out["CVSD"] = out["RMSSD"] / out["MeanBB"]

    # Robust
    out["MedianBB"] = np.nanmedian(bbi)
    out["MadBB"] = mad(bbi)
    out["MCVBB"] = out["MadBB"] / out["MedianBB"]

    #    # Extreme-based
    #    nn50 = np.sum(np.abs(diff_rri) > 50)
    #    nn20 = np.sum(np.abs(diff_rri) > 20)
    #    out["pNN50"] = nn50 / len(rri) * 100
    #    out["pNN20"] = nn20 / len(rri) * 100
    #
    #    # Geometrical domain
    #    bar_y, bar_x = np.histogram(rri, bins=range(300, 2000, 8))
    #    bar_y, bar_x = np.histogram(rri, bins="auto")
    #    out["TINN"] = np.max(bar_x) - np.min(bar_x)  # Triangular Interpolation of the NN Interval Histogram
    #    out["HTI"] = len(rri) / np.max(bar_y)  # HRV Triangular Index

    return out 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:34,代碼來源:rsp_rrv.py

示例13: _standardize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def _standardize(data, robust=False, window=None, **kwargs):

    # Compute standardized on whole data
    if window is None:
        if robust is False:
            z = (data - np.nanmean(data, axis=0)) / np.nanstd(data, axis=0, ddof=1)
        else:
            z = (data - np.nanmedian(data, axis=0)) / mad(data)

    # Rolling standardization on windows
    else:
        df = pd.DataFrame(data)  # Force dataframe

        if robust is False:
            z = (df - df.rolling(window, min_periods=0, **kwargs).mean()) / df.rolling(
                window, min_periods=0, **kwargs
            ).std(ddof=1)
        else:
            z = (df - df.rolling(window, min_periods=0, **kwargs).median()) / df.rolling(
                window, min_periods=0, **kwargs
            ).apply(mad)

        # Fill the created nans
        z = z.fillna(method="bfill")

        # Restore to vector or array
        if z.shape[1] == 1:
            z = z[0].values
        else:
            z = z.values

    return z 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:34,代碼來源:standardize.py

示例14: return_std

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def return_std(self):
        values_array = np.array(self.vals, dtype=np.float)
        return np.nanstd(values_array) 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:5,代碼來源:error_logger.py

示例15: test_nanfunctions_matrices_general

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nanstd [as 別名]
def test_nanfunctions_matrices_general():
    # Check that it works and that type and
    # shape are preserved
    # 2018-04-29: moved here from core.tests.test_nanfunctions
    mat = np.matrix(np.eye(3))
    for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
              np.nanmean, np.nanvar, np.nanstd):
        res = f(mat, axis=0)
        assert_(isinstance(res, np.matrix))
        assert_(res.shape == (1, 3))
        res = f(mat, axis=1)
        assert_(isinstance(res, np.matrix))
        assert_(res.shape == (3, 1))
        res = f(mat)
        assert_(np.isscalar(res))

    for f in np.nancumsum, np.nancumprod:
        res = f(mat, axis=0)
        assert_(isinstance(res, np.matrix))
        assert_(res.shape == (3, 3))
        res = f(mat, axis=1)
        assert_(isinstance(res, np.matrix))
        assert_(res.shape == (3, 3))
        res = f(mat)
        assert_(isinstance(res, np.matrix))
        assert_(res.shape == (1, 3*3)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:28,代碼來源:test_interaction.py


注:本文中的numpy.nanstd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。