本文整理匯總了Python中numpy.nans方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.nans方法的具體用法?Python numpy.nans怎麽用?Python numpy.nans使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.nans方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_NanGuardMode
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def test_NanGuardMode():
"""
Tests if NanGuardMode is working by feeding in numpy.inf and numpy.nans
intentionally. A working implementation should be able to capture all
the abnormalties.
"""
x = T.matrix()
w = theano.shared(numpy.random.randn(5, 7).astype(theano.config.floatX))
y = T.dot(x, w)
fun = theano.function(
[x], y,
mode=NanGuardMode(nan_is_error=True, inf_is_error=True)
)
a = numpy.random.randn(3, 5).astype(theano.config.floatX)
infa = numpy.tile(
(numpy.asarray(100.) ** 1000000).astype(theano.config.floatX), (3, 5))
nana = numpy.tile(
numpy.asarray(numpy.nan).astype(theano.config.floatX), (3, 5))
biga = numpy.tile(
numpy.asarray(1e20).astype(theano.config.floatX), (3, 5))
fun(a) # normal values
# Temporarily silence logger
_logger = logging.getLogger("theano.compile.nanguardmode")
try:
_logger.propagate = False
assert_raises(AssertionError, fun, infa) # INFs
assert_raises(AssertionError, fun, nana) # NANs
assert_raises(AssertionError, fun, biga) # big values
finally:
_logger.propagate = True
示例2: _rm_all_Sc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def _rm_all_Sc(self):
"""Remove people who didn't enter a Rx score in Rx division.
And set other Scale values as np.nans.
Returns
-------
cfopendata : pd.Dataframe
Crossfit open data with less rows.
"""
l = []
for i in range(self.wodscompleted):
l.append(self.df.loc[:, self.scorel[i]].values.tolist())
# Create index for nans and change for each coloumn
ii = np.empty(shape=(self.wodscompleted, len(self.df)), dtype=int)
ii[:] = -1
# Find scaled inputs and set to nan
for i in range(self.wodscompleted):
for j in range(len(self.df)):
if l[i][j].endswith('- s'):
ii[i,j] = j
for i in range(self.wodscompleted):
tmp = ii[i,:]
_tmp = tmp[tmp >= 0]
self.df.iloc[_tmp,self.ci[i]] = np.nan
# If all scores are nan set row to nan and remove
_ind = pd.isnull(self.df.loc[:,self.scorel]).all(axis=1)
_in2 = _ind[_ind == True].index.values
self.df.iloc[_in2,:] = np.nan
self.df = self.df.dropna(axis=0, how='all').reset_index(drop=True)
return self.df
示例3: _rm_all_Sc_and_0s
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def _rm_all_Sc_and_0s(self):
"""Remove people who didn't enter a Rx score in Rx division or did not
enter a score.
Returns
-------
cfopendata : pd.Dataframe
Crossfit open data with less rows.
"""
l = []
for i in range(self.wodscompleted):
l.append(self.df.loc[:, self.scorel[i]].values.tolist())
# Create index for nans and change for each coloumn
ii = np.empty(shape=(self.wodscompleted, len(self.df)), dtype=int)
ii[:] = -1
# Find empty scores
for i in range(self.wodscompleted):
for j in range(len(self.df)):
if l[i][j] == '0' or l[i][j] == '':
ii[i,j] = j
for i in range(self.wodscompleted):
tmp = ii[i,:]
_tmp = tmp[tmp >= 0]
self.df.iloc[_tmp,self.ci[i]] = np.nan
# If all scores are nan set row to nan and remove
_ind = pd.isnull(self.df.loc[:,self.scorel]).all(axis=1)
_in2 = _ind[_ind == True].index.values
self.df.iloc[_in2,:] = np.nan
self.df = self.df.dropna(axis=0, how='all').reset_index(drop=True)
return self.df
示例4: _rm_Sc_str
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def _rm_Sc_str(self):
"""Remove the ' - s' from all the scores. and make '0' or '' a np.nan
Returns
-------
cfopendata : pd.Dataframe
Crossfit open data without ' - s' in scores and np.nans.
"""
l = []; nl = []
for i in range(self.wodscompleted):
l.append(self.df.loc[:, self.scorel[i]].values.tolist())
nl.append(self.df.loc[:, self.scorel[i]].values.tolist())
# Create index for nans and change for each coloumn
ii = np.empty(shape=(self.wodscompleted, len(self.df)), dtype=int)
ii[:] = -1
# Find scaled inputs and set to nan
for i in range(self.wodscompleted):
for j in range(len(self.df)):
if l[i][j].endswith('- s'):
nl[i][j] = l[i][j][0:-4]
else:
ii[i,j] = j
# Add new list back in and nans
for i in range(self.wodscompleted):
self.df.iloc[:,self.ci[i]] = nl[i][:]
tmp = ii[i,:]
_tmp = tmp[tmp >= 0]
self.df.iloc[_tmp,self.ci[i]] = np.nan
return self.df
示例5: write_metadata
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def write_metadata(hdf5_out, dim, metadata_df, convert_back_to_neg_666, gzip_compression):
"""
Writes either column or row metadata to proper node of gctx out (hdf5) file.
Input:
- hdf5_out (h5py): open hdf5 file to write to
- dim (str; must be "row" or "col"): dimension of metadata to write to
- metadata_df (pandas DataFrame): metadata DataFrame to write to file
- convert_back_to_neg_666 (bool): Whether to convert numpy.nans back to "-666",
as per CMap metadata null convention
"""
if dim == "col":
hdf5_out.create_group(col_meta_group_node)
metadata_node_name = col_meta_group_node
elif dim == "row":
hdf5_out.create_group(row_meta_group_node)
metadata_node_name = row_meta_group_node
else:
logger.error("'dim' argument must be either 'row' or 'col'!")
# write id field to expected node
hdf5_out.create_dataset(metadata_node_name + "/id", data=[numpy.string_(str(x)) for x in metadata_df.index],
compression=gzip_compression)
metadata_fields = list(metadata_df.columns.copy())
# if specified, convert numpy.nans in metadata back to -666
if convert_back_to_neg_666:
for c in metadata_fields:
metadata_df[[c]] = metadata_df[[c]].replace([numpy.nan], ["-666"])
# write metadata columns to their own arrays
for field in [entry for entry in metadata_fields if entry != "ind"]:
if numpy.array(metadata_df.loc[:, field]).dtype.type in (numpy.str_, numpy.object_):
array_write = numpy.array(metadata_df.loc[:, field]).astype('S')
else:
array_write = numpy.array(metadata_df.loc[:, field])
hdf5_out.create_dataset(metadata_node_name + "/" + field,
data=array_write,
compression=gzip_compression)
示例6: get_single
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def get_single(**kwargs):
"""Wrap the number with np.nans on either end
"""
num = get_raw_data(**kwargs)
new_array = np.zeros((num.shape[0]+2, num.shape[1]))
new_array[0] = [np.nan, np.nan]
new_array[-1] = [np.nan, np.nan]
new_array[1:-1] = num
return new_array
示例7: get_sequence
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def get_sequence(sequence, writebox, spaces=False):
"""Returns a sequence
sequence list: the sequence of integers
writebox list: [min x, max x, min y, max y]
"""
nans = np.array([np.nan, np.nan])
nums= nans.copy()
if spaces is False:
each_num_width = (writebox[1] - writebox[0]) / float(len(sequence))
else:
each_num_width = (writebox[1] - writebox[0]) / float(len(sequence)*2 - 1)
for ii, nn in enumerate(sequence):
if spaces is False:
num_writebox = [writebox[0] + each_num_width * ii ,
writebox[0] + each_num_width * (ii+1),
writebox[2], writebox[3]]
else:
num_writebox = [writebox[0] + each_num_width * 2 * ii ,
writebox[0] + each_num_width * 2 * (ii+.5),
writebox[2], writebox[3]]
if isinstance(nn, int):
nn = str(nn)
num = get_raw_data(nn, num_writebox)
nums = np.vstack([nums, num, nans])
return nums
### Testing code ###
示例8: has_no_nans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def has_no_nans(df, columns=None):
"""Asserts that there are no np.nans in `df`.
This is a convenience wrapper for `has_no_x`.
Args:
df (pd.DataFrame): Any pd.DataFrame.
columns (list): A subset of columns to check for np.nans.
Returns:
Original `df`.
"""
return has_no_x(df, values=[np.nan], columns=columns)
示例9: _extract_score
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def _extract_score(self, wod):
"""Convert workout score to a pd.Timedelta or integer.
Parameters
----------
wod : string
Name of the wod.
Returns
-------
cfopendata : pd.Dataframe
Score are either a pd.Timedelta, integer.
"""
df_c_name = wod+'_score'
s = self.df.loc[:,df_c_name].values.tolist()
# Keep track of the indicies
tdi = np.empty(shape=(0, 0), dtype=int) # time delta
ii = np.empty(shape=(0, 0), dtype=int) # integers
ni = np.empty(shape=(0, 0), dtype=int) # np.nans
# initialize new_score array
_s = self.df.loc[:,df_c_name].reset_index(drop=True)
for i, _str in enumerate(s):
# nans
if isinstance(_str, float):
ni = np.append(ni, i)
else:
# Convert time to time delta
if ':' in _str:
# Some team scores are H:MM:SS
if _str.count(':') > 1:
_s[i] = pd.to_timedelta(_str)
else:
_s[i] = pd.to_timedelta('0:'+_str)
tdi = np.append(tdi, i)
# Convert reps/weight to integers
else:
_s[i] = int(_str.split(" ")[0])
# Drop scores of 0 reps/weight
if _s[i] > 0:
ii = np.append(ii, i)
else:
_s[i] = np.nan
ni = np.append(ni, i)
self.cleandata.loc[:,df_c_name] = _s.values
self.tdi = tdi
self.ii = ii
self.ni = ni
return self
示例10: _wod_percentile
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def _wod_percentile(self, wod):
"""Calculate wod percentile for reps/weight.
Parameters
----------
wod : string
Name of wod.
Returns
-------
cfopendata : pd.Dataframe
Added percentile column.
"""
df_c_name = wod+'_score'
_s = self.cleandata.loc[:,df_c_name]
_s_i = _s[self.ii]
_s_i_sorted = _s_i.sort_values(ascending=False)
pct = np.flip(np.round(np.linspace(0, 100, num=len(_s_i_sorted)),
decimals=4), 0)
# Remove duplicates
pct = self._rm_dups_wod(_s_i_sorted, pct)
# Check if any nans rows
if len(self.ni) > 0:
# Get nan rows
_s_n = _s[self.ni]
# Append to s_td_sorted
_s_i_sorted = _s_i_sorted.append(_s_n)
# Add nans into pct
_nan_arr = np.arange(len(_s_i_sorted) - len(pct), dtype=np.double)
_nan_arr[:] = np.nan
# Append NaN to pct
pct = np.append(pct, _nan_arr)
# Append pct to _s_i_sorted
_df_i_sorted = _s_i_sorted.to_frame(name = df_c_name)
_df_i_sorted2 = _df_i_sorted.copy()
_df_i_sorted2 = _df_i_sorted2.rename(
columns={wod+'_score': wod+'_percentile'})
pct = np.transpose(np.expand_dims(pct, axis=0))
_df_i_sorted2.loc[:] = pct
# Put back into dataframe index
_df_i_sorted2.index = _df_i_sorted2.index.map(int)
_df = _df_i_sorted2.sort_index()
pct_vals = _df.values
# Add to self.cleandata
self.cleandata.loc[:, wod+'_percentile'] = pct_vals
return self
示例11: get_histogram
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def get_histogram(self, column, fix_offset=False, **kwargs):
""" Return a histogram (counts and bins) for a specified column of self.data
Parameters
==========
column : str
The name of the column you want to get a histogram for. Must be numeric type
fix_offset : bool, False
If True, bins is set as the centre point for each bin, rather than the bin edges.
This decreases the length of bins by 1, since there is one less bin that there are
bin edges.
**kwargs : dict, optional
Any arguments of np.histogram
(https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.histogram.html)
Returns
=======
(values, bins) : tuple
values are the counts in each bin, bins are either bin edges (fix_offset=False) or
centre-points of the bins (fix_offset=True)
"""
if not pd.api.types.is_numeric_dtype(self.data[column]):
raise ConfigError("get_histogram :: %s is not of numeric type" % (column))
if fix_offset:
range_offset = (kwargs["range"][1] - kwargs["range"][0]) / (kwargs["bins"] - 1) / 2
kwargs["range"] = (kwargs["range"][0] - range_offset, kwargs["range"][1] + range_offset)
# define numpy array; filter infinities and nans
column_data = self.data[column].values
column_data = column_data[np.isfinite(column_data)]
# histogram
values, bins = np.histogram(self.data[column], **kwargs)
if fix_offset:
bins = bins[:-1] + range_offset
# now bins have the same length as values and represent the midpoint of each bin (e.g.
# the first bin value is the original minimum value passed to this function
return values, bins
示例12: strings_to_categoricals
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import nans [as 別名]
def strings_to_categoricals(self, df: Optional[pd.DataFrame] = None):
"""\
Transform string annotations to categoricals.
Only affects string annotations that lead to less categories than the
total number of observations.
Params
------
df
If `df` is `None`, modifies both :attr:`obs` and :attr:`var`,
otherwise modifies `df` inplace.
Notes
-----
Turns the view of an :class:`~anndata.AnnData` into an actual
:class:`~anndata.AnnData`.
"""
dont_modify = False # only necessary for backed views
if df is None:
dfs = [self.obs, self.var]
if self.is_view and self.isbacked:
dont_modify = True
else:
dfs = [df]
for df in dfs:
string_cols = [
key
for key in df.columns
if is_string_dtype(df[key]) and not is_categorical(df[key])
]
for key in string_cols:
# make sure we only have strings
# (could be that there are np.nans (float), -666, "-666", for instance)
c = df[key].astype("U")
# make a categorical
c = pd.Categorical(c, categories=natsorted(np.unique(c)))
if len(c.categories) >= len(c):
continue
if dont_modify:
raise RuntimeError(
"Please call `.strings_to_categoricals()` on full "
"AnnData, not on this view. You might encounter this"
"error message while copying or writing to disk."
)
if self.is_view:
warnings.warn(
"Initializing view as actual.", ImplicitModificationWarning
)
# If `self` is a view, it will be actualized in the next line,
# therefore the previous warning
df[key] = c
logger.info(f"... storing {key!r} as categorical")