當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.minimum方法代碼示例

本文整理匯總了Python中numpy.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.minimum方法的具體用法?Python numpy.minimum怎麽用?Python numpy.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.minimum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def detect(self, img):
        """
        img: rgb 3 channel
        """
        minsize = 20  # minimum size of face
        threshold = [0.6, 0.7, 0.7]  # three steps's threshold
        factor = 0.709  # scale factor

        bounding_boxes, _ = FaceDet.detect_face(
                img, minsize, self.pnet, self.rnet, self.onet, threshold, factor)
        area = (bounding_boxes[:, 2] - bounding_boxes[:, 0]) * (bounding_boxes[:, 3] - bounding_boxes[:, 1])
        face_idx = area.argmax()
        bbox = bounding_boxes[face_idx][:4]  # xy,xy

        margin = 32
        x0 = np.maximum(bbox[0] - margin // 2, 0)
        y0 = np.maximum(bbox[1] - margin // 2, 0)
        x1 = np.minimum(bbox[2] + margin // 2, img.shape[1])
        y1 = np.minimum(bbox[3] + margin // 2, img.shape[0])
        x0, y0, x1, y1 = bbox = [int(k + 0.5) for k in [x0, y0, x1, y1]]
        cropped = img[y0:y1, x0:x1, :]
        scaled = cv2.resize(cropped, (160, 160), interpolation=cv2.INTER_LINEAR)
        return scaled, bbox 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:25,代碼來源:face_attack.py

示例2: apply_perturbations

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def apply_perturbations(i, j, X, increase, theta, clip_min, clip_max):
    """
    TensorFlow implementation for apply perturbations to input features based
    on salency maps
    :param i: index of first selected feature
    :param j: index of second selected feature
    :param X: a matrix containing our input features for our sample
    :param increase: boolean; true if we are increasing pixels, false otherwise
    :param theta: delta for each feature adjustment
    :param clip_min: mininum value for a feature in our sample
    :param clip_max: maximum value for a feature in our sample
    : return: a perturbed input feature matrix for a target class
    """

    # perturb our input sample
    if increase:
        X[0, i] = np.minimum(clip_max, X[0, i] + theta)
        X[0, j] = np.minimum(clip_max, X[0, j] + theta)
    else:
        X[0, i] = np.maximum(clip_min, X[0, i] - theta)
        X[0, j] = np.maximum(clip_min, X[0, j] - theta)

    return X 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:25,代碼來源:attacks_tf.py

示例3: _prepro_cpg

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def _prepro_cpg(self, states, dists):
        """Preprocess the state and distance of neighboring CpG sites."""
        prepro_states = []
        prepro_dists = []
        for state, dist in zip(states, dists):
            nan = state == dat.CPG_NAN
            if np.any(nan):
                state[nan] = np.random.binomial(1, state[~nan].mean(),
                                                nan.sum())
                dist[nan] = self.cpg_max_dist
            dist = np.minimum(dist, self.cpg_max_dist) / self.cpg_max_dist
            prepro_states.append(np.expand_dims(state, 1))
            prepro_dists.append(np.expand_dims(dist, 1))
        prepro_states = np.concatenate(prepro_states, axis=1)
        prepro_dists = np.concatenate(prepro_dists, axis=1)
        if self.cpg_wlen:
            center = prepro_states.shape[2] // 2
            delta = self.cpg_wlen // 2
            tmp = slice(center - delta, center + delta)
            prepro_states = prepro_states[:, :, tmp]
            prepro_dists = prepro_dists[:, :, tmp]
        return (prepro_states, prepro_dists) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:dataloader_m.py

示例4: clip_boxes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def clip_boxes(boxes, im_shape):
    """
    Clip boxes to image boundaries.
    :param boxes: [N, 4* num_classes]
    :param im_shape: tuple of 2
    :return: [N, 4* num_classes]
    """
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:bbox.py

示例5: _update_labels

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def _update_labels(self, label, crop_box, height, width):
        """Convert labels according to crop box"""
        xmin = float(crop_box[0]) / width
        ymin = float(crop_box[1]) / height
        w = float(crop_box[2]) / width
        h = float(crop_box[3]) / height
        out = label.copy()
        out[:, (1, 3)] -= xmin
        out[:, (2, 4)] -= ymin
        out[:, (1, 3)] /= w
        out[:, (2, 4)] /= h
        out[:, 1:5] = np.maximum(0, out[:, 1:5])
        out[:, 1:5] = np.minimum(1, out[:, 1:5])
        coverage = self._calculate_areas(out[:, 1:]) * w * h / self._calculate_areas(label[:, 1:])
        valid = np.logical_and(out[:, 3] > out[:, 1], out[:, 4] > out[:, 2])
        valid = np.logical_and(valid, coverage > self.min_eject_coverage)
        valid = np.where(valid)[0]
        if valid.size < 1:
            return None
        out = out[valid, :]
        return out 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:detection.py

示例6: test_quantize_float32_to_int8

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def test_quantize_float32_to_int8():
    shape = rand_shape_nd(4)
    data = rand_ndarray(shape, 'default', dtype='float32')
    min_range = mx.nd.min(data)
    max_range = mx.nd.max(data)
    qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
    data_np = data.asnumpy()
    min_range = min_range.asscalar()
    max_range = max_range.asscalar()
    real_range = np.maximum(np.abs(min_range), np.abs(max_range))
    quantized_range = 127.0
    scale = quantized_range / real_range
    assert qdata.dtype == np.int8
    assert min_val.dtype == np.float32
    assert max_val.dtype == np.float32
    assert same(min_val.asscalar(), -real_range)
    assert same(max_val.asscalar(), real_range)
    qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
    assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_quantization.py

示例7: heuristic_fn_vec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def heuristic_fn_vec(n1, n2, n_ori, step_size):
  # n1 is a vector and n2 is a single point.
  dx = (n1[:,0] - n2[0,0])/step_size
  dy = (n1[:,1] - n2[0,1])/step_size
  dt = n1[:,2] - n2[0,2]
  dt = np.mod(dt, n_ori)
  dt = np.minimum(dt, n_ori-dt)

  if n_ori == 6:
    if dx*dy > 0:
      d = np.maximum(np.abs(dx), np.abs(dy))
    else:
      d = np.abs(dy-dx)
  elif n_ori == 4:
    d = np.abs(dx) + np.abs(dy)

  return (d + dt).reshape((-1,1)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:graph_utils.py

示例8: resize_maps

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def resize_maps(map, map_scales, resize_method):
  scaled_maps = []
  for i, sc in enumerate(map_scales):
    if resize_method == 'antialiasing':
      # Resize using open cv so that we can compute the size.
      # Use PIL resize to use anti aliasing feature.
      map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
      w = map_.shape[1]; h = map_.shape[0]

      map_img = PIL.Image.fromarray((map*255).astype(np.uint8))
      map__img = map_img.resize((w,h), PIL.Image.ANTIALIAS)
      map_ = np.asarray(map__img).astype(np.float32)
      map_ = map_/255.
      map_ = np.minimum(map_, 1.0)
      map_ = np.maximum(map_, 0.0)
    elif resize_method == 'linear_noantialiasing':
      map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
    else:
      logging.error('Unknown resizing method')
    scaled_maps.append(map_)
  return scaled_maps 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:map_utils.py

示例9: raw_valid_fn_vec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def raw_valid_fn_vec(self, xyt):
    """Returns if the given set of nodes is valid or not."""
    height = self.traversible.shape[0]
    width = self.traversible.shape[1]
    x = np.round(xyt[:,[0]]).astype(np.int32)
    y = np.round(xyt[:,[1]]).astype(np.int32)
    is_inside = np.all(np.concatenate((x >= 0, y >= 0,
                                       x < width, y < height), axis=1), axis=1)
    x = np.minimum(np.maximum(x, 0), width-1)
    y = np.minimum(np.maximum(y, 0), height-1)
    ind = np.ravel_multi_index((y,x), self.traversible.shape)
    is_traversible = self.traversible.ravel()[ind]

    is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
                                     axis=1), axis=1)
    return is_valid 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:nav_env.py

示例10: intersection

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def intersection(boxes1, boxes2):
  """Compute pairwise intersection areas between boxes.

  Args:
    boxes1: a numpy array with shape [N, 4] holding N boxes
    boxes2: a numpy array with shape [M, 4] holding M boxes

  Returns:
    a numpy array with shape [N*M] representing pairwise intersection area
  """
  [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1)
  [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1)

  all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2))
  all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2))
  intersect_heights = np.maximum(
      np.zeros(all_pairs_max_ymin.shape),
      all_pairs_min_ymax - all_pairs_max_ymin)
  all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2))
  all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2))
  intersect_widths = np.maximum(
      np.zeros(all_pairs_max_xmin.shape),
      all_pairs_min_xmax - all_pairs_max_xmin)
  return intersect_heights * intersect_widths 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:np_box_ops.py

示例11: create_random_boxes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def create_random_boxes(num_boxes, max_height, max_width):
  """Creates random bounding boxes of specific maximum height and width.

  Args:
    num_boxes: number of boxes.
    max_height: maximum height of boxes.
    max_width: maximum width of boxes.

  Returns:
    boxes: numpy array of shape [num_boxes, 4]. Each row is in form
        [y_min, x_min, y_max, x_max].
  """

  y_1 = np.random.uniform(size=(1, num_boxes)) * max_height
  y_2 = np.random.uniform(size=(1, num_boxes)) * max_height
  x_1 = np.random.uniform(size=(1, num_boxes)) * max_width
  x_2 = np.random.uniform(size=(1, num_boxes)) * max_width

  boxes = np.zeros(shape=(num_boxes, 4))
  boxes[:, 0] = np.minimum(y_1, y_2)
  boxes[:, 1] = np.minimum(x_1, x_2)
  boxes[:, 2] = np.maximum(y_1, y_2)
  boxes[:, 3] = np.maximum(x_1, x_2)

  return boxes.astype(np.float32) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:test_utils.py

示例12: testMultilabelMatch3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def testMultilabelMatch3(self):
    predictions = np.random.randint(1, 5, size=(100, 1, 1, 1))
    targets = np.random.randint(1, 5, size=(100, 10, 1, 1))
    weights = np.random.randint(0, 2, size=(100, 1, 1, 1))
    targets *= weights

    predictions_repeat = np.repeat(predictions, 10, axis=1)
    expected = (predictions_repeat == targets).astype(float)
    expected = np.sum(expected, axis=(1, 2, 3))
    expected = np.minimum(expected / 3.0, 1.)
    expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0]
    with self.test_session() as session:
      scores, weights_ = metrics.multilabel_accuracy_match3(
          tf.one_hot(predictions, depth=5, dtype=tf.float32),
          tf.constant(targets, dtype=tf.int32))
      a, a_op = tf.metrics.mean(scores, weights_)
      session.run(tf.local_variables_initializer())
      session.run(tf.global_variables_initializer())
      _ = session.run(a_op)
      actual = session.run(a)
    self.assertAlmostEqual(actual, expected, places=6) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics_test.py

示例13: vis_det_and_mask

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def vis_det_and_mask(im, class_name, dets, masks, thresh=0.8):
    """Visual debugging of detections."""
    num_dets = np.minimum(10, dets.shape[0])
    colors_mask = random_colors(num_dets)
    colors_bbox = np.round(np.random.rand(num_dets, 3) * 255)
    # sort rois according to the coordinates, draw upper bbox first
    draw_mask = np.zeros(im.shape[:2], dtype=np.uint8)

    for i in range(1):
        bbox = tuple(int(np.round(x)) for x in dets[i, :4])
        mask = masks[i, :, :]
        full_mask = unmold_mask(mask, bbox, im.shape)

        score = dets[i, -1]
        if score > thresh:
            word_width = len(class_name)
            cv2.rectangle(im, bbox[0:2], bbox[2:4], colors_bbox[i], 2)
            cv2.rectangle(im, bbox[0:2], (bbox[0] + 18 + word_width*8, bbox[1]+15), colors_bbox[i], thickness=cv2.FILLED)
            apply_mask(im, full_mask, draw_mask, colors_mask[i], 0.5)
            draw_mask += full_mask
            cv2.putText(im, '%s' % (class_name), (bbox[0]+5, bbox[1] + 12), cv2.FONT_HERSHEY_PLAIN,
								1.0, (255,255,255), thickness=1)
    return im 
開發者ID:guoruoqian,項目名稱:cascade-rcnn_Pytorch,代碼行數:25,代碼來源:net_utils.py

示例14: test_deficit_parameter

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def test_deficit_parameter():
    """Test DeficitParameter

    Here we test both uses of the DeficitParameter:
      1) Recording the deficit for a node each timestep
      2) Using yesterday's deficit to control today's flow
    """
    model = load_model("deficit.json")

    model.run()

    max_flow = np.array([5, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8])
    demand = 10.0
    supplied = np.minimum(max_flow, demand)
    expected = demand - supplied
    actual = model.recorders["deficit_recorder"].data
    assert_allclose(expected, actual[:,0])

    expected_yesterday = [0]+list(expected[0:-1])
    actual_yesterday = model.recorders["yesterday_recorder"].data
    assert_allclose(expected_yesterday, actual_yesterday[:,0]) 
開發者ID:pywr,項目名稱:pywr,代碼行數:23,代碼來源:test_parameters.py

示例15: test_flow_parameter

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import minimum [as 別名]
def test_flow_parameter():
    """test FlowParameter

    """
    model = load_model("flow_parameter.json")

    model.run()

    max_flow = np.array([5, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8])
    demand = 10.0
    supplied = np.minimum(max_flow, demand)

    actual = model.recorders["flow_recorder"].data
    assert_allclose(supplied, actual[:,0])

    expected_yesterday = [3.1415]+list(supplied[0:-1])
    actual_yesterday = model.recorders["yesterday_flow_recorder"].data
    assert_allclose(expected_yesterday, actual_yesterday[:,0]) 
開發者ID:pywr,項目名稱:pywr,代碼行數:20,代碼來源:test_parameters.py


注:本文中的numpy.minimum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。