本文整理匯總了Python中numpy.min方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.min方法的具體用法?Python numpy.min怎麽用?Python numpy.min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mutation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def mutation(self, mutation_rate=0.01):
active_check = False
for n in range(self.net_info.node_num + self.net_info.out_num):
t = self.gene[n][0]
# mutation for type gene
type_num = self.net_info.func_type_num if n < self.net_info.node_num else self.net_info.out_type_num
if np.random.rand() < mutation_rate and type_num > 1:
self.gene[n][0] = self.__mutate(self.gene[n][0], 0, type_num)
if self.is_active[n]:
active_check = True
# mutation for connection gene
col = np.min((int(n / self.net_info.rows), self.net_info.cols))
max_connect_id = col * self.net_info.rows + self.net_info.input_num
min_connect_id = (col - self.net_info.level_back) * self.net_info.rows + self.net_info.input_num \
if col - self.net_info.level_back >= 0 else 0
in_num = self.net_info.func_in_num[t] if n < self.net_info.node_num else self.net_info.out_in_num[t]
for i in range(self.net_info.max_in_num):
if np.random.rand() < mutation_rate and max_connect_id - min_connect_id > 1:
self.gene[n][i+1] = self.__mutate(self.gene[n][i+1], min_connect_id, max_connect_id)
if self.is_active[n] and i < in_num:
active_check = True
self.check_active()
return active_check
示例2: neutral_mutation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def neutral_mutation(self, mutation_rate=0.01):
for n in range(self.net_info.node_num + self.net_info.out_num):
t = self.gene[n][0]
# mutation for type gene
type_num = self.net_info.func_type_num if n < self.net_info.node_num else self.net_info.out_type_num
if not self.is_active[n] and np.random.rand() < mutation_rate and type_num > 1:
self.gene[n][0] = self.__mutate(self.gene[n][0], 0, type_num)
# mutation for connection gene
col = np.min((int(n / self.net_info.rows), self.net_info.cols))
max_connect_id = col * self.net_info.rows + self.net_info.input_num
min_connect_id = (col - self.net_info.level_back) * self.net_info.rows + self.net_info.input_num \
if col - self.net_info.level_back >= 0 else 0
in_num = self.net_info.func_in_num[t] if n < self.net_info.node_num else self.net_info.out_in_num[t]
for i in range(self.net_info.max_in_num):
if (not self.is_active[n] or i >= in_num) and np.random.rand() < mutation_rate \
and max_connect_id - min_connect_id > 1:
self.gene[n][i+1] = self.__mutate(self.gene[n][i+1], min_connect_id, max_connect_id)
self.check_active()
return False
示例3: load_RSM
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def load_RSM(filename):
om, tt, psd = xu.io.getxrdml_map(filename)
om = np.deg2rad(om)
tt = np.deg2rad(tt)
wavelength = 1.54056
q_y = (1 / wavelength) * (np.cos(tt) - np.cos(2 * om - tt))
q_x = (1 / wavelength) * (np.sin(tt) - np.sin(2 * om - tt))
xi = np.linspace(np.min(q_x), np.max(q_x), 100)
yi = np.linspace(np.min(q_y), np.max(q_y), 100)
psd[psd < 1] = 1
data_grid = griddata(
(q_x, q_y), psd, (xi[None, :], yi[:, None]), fill_value=1, method="cubic"
)
nx, ny = data_grid.shape
range_values = [np.min(q_x), np.max(q_x), np.min(q_y), np.max(q_y)]
output_data = (
Panel(np.log(data_grid).reshape(nx, ny, 1), minor_axis=["RSM"])
.transpose(2, 0, 1)
.to_frame()
)
return range_values, output_data
示例4: create_mnist
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def create_mnist(tfrecord_dir, mnist_dir):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
labels = np.frombuffer(file.read(), np.uint8, offset=8)
images = images.reshape(-1, 1, 28, 28)
images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
assert labels.shape == (60000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
示例5: create_mnistrgb
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
images = images.reshape(-1, 28, 28)
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
with TFRecordExporter(tfrecord_dir, num_images) as tfr:
rnd = np.random.RandomState(random_seed)
for idx in range(num_images):
tfr.add_image(images[rnd.randint(images.shape[0], size=3)])
#----------------------------------------------------------------------------
示例6: create_cifar100
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def create_cifar100(tfrecord_dir, cifar100_dir):
print('Loading CIFAR-100 from "%s"' % cifar100_dir)
import pickle
with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images = data['data'].reshape(-1, 3, 32, 32)
labels = np.array(data['fine_labels'])
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype == np.int32
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 99
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
示例7: test_equ_random_sample_scalar
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def test_equ_random_sample_scalar(self):
"""
Test that random sample of reddening at arbitary distance is actually
from the set of possible reddening samples at that distance. Uses vector
of coordinates/distances as input. Uses single set of
coordinates/distance as input.
"""
for d in self._test_data:
# Prepare coordinates (with random distances)
l = d['l']*units.deg
b = d['b']*units.deg
dm = 3. + (25.-3.)*np.random.random()
dist = 10.**(dm/5.-2.)
c = coords.SkyCoord(l, b, distance=dist*units.kpc, frame='galactic')
ebv_data = self._interp_ebv(d, dist)
ebv_calc = self._bayestar(c, mode='random_sample')
d_ebv = np.min(np.abs(ebv_data[:] - ebv_calc))
np.testing.assert_allclose(d_ebv, 0., atol=0.001, rtol=0.0001)
示例8: test_equ_random_sample_nodist_vector
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def test_equ_random_sample_nodist_vector(self):
"""
Test that a random sample of the reddening vs. distance curve is drawn
from the full set of samples. Uses vector of coordinates as input.
"""
# Prepare coordinates
l = [d['l']*units.deg for d in self._test_data]
b = [d['b']*units.deg for d in self._test_data]
c = coords.SkyCoord(l, b, frame='galactic')
ebv_data = np.array([d['samples'] for d in self._test_data])
ebv_calc = self._bayestar(c, mode='random_sample')
# print 'vector random sample:'
# print 'ebv_data.shape = {}'.format(ebv_data.shape)
# print 'ebv_calc.shape = {}'.format(ebv_calc.shape)
# print ebv_data[0]
# print ebv_calc[0]
d_ebv = np.min(np.abs(ebv_data[:,:,:] - ebv_calc[:,None,:]), axis=1)
np.testing.assert_allclose(d_ebv, 0., atol=0.001, rtol=0.0001)
示例9: wave2input_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def wave2input_image(wave, window, pos=0, pad=0):
wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
wave_image *= window
spectrum_image = np.fft.fft(wave_image, axis=1)
input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)
np.clip(input_image, 1000, None, out=input_image)
np.log(input_image, out=input_image)
input_image += bias
input_image /= scale
if np.max(input_image) > 0.95:
print('input image max bigger than 0.95', np.max(input_image))
if np.min(input_image) < 0.05:
print('input image min smaller than 0.05', np.min(input_image))
return input_image
示例10: cmap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def cmap(self, data=None):
'''
lblidx.cmap() yields a colormap for the given label index object that assumes that the data
being plotted will be rescaled such that label 0 is 0 and the highest label value in the
label index is equal to 1.
lblidx.cmap(data) yields a colormap that will correctly color the labels given in data if
data is scaled such that its minimum and maximum value are 0 and 1.
'''
import matplotlib.colors
from_list = matplotlib.colors.LinearSegmentedColormap.from_list
if data is None: return self.colormap
data = np.asarray(data).flatten()
(vmin,vmax) = (np.min(data), np.max(data))
ii = np.argsort(self.ids)
ids = np.asarray(self.ids)[ii]
if vmin == vmax:
(vmin,vmax,ii) = (vmin-0.5, vmax+0.5, vmin)
clr = self.color_lookup(ii)
return from_list('label1', [(0, clr), (1, clr)])
q = (ids >= vmin) & (ids <= vmax)
ids = ids[q]
clrs = self.color_lookup(ids)
vals = (ids - vmin) / (vmax - vmin)
return from_list('label%d' % len(vals), list(zip(vals, clrs)))
示例11: resize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def resize(im, short, max_size):
"""
only resize input image to target size and return scale
:param im: BGR image input by opencv
:param short: one dimensional size (the short side)
:param max_size: one dimensional max size (the long side)
:return: resized image (NDArray) and scale (float)
"""
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(short) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
return im, im_scale
示例12: collect
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def collect(self, name, arr):
"""Callback function for collecting min and max values from an NDArray."""
name = py_str(name)
if self.include_layer is not None and not self.include_layer(name):
return
handle = ctypes.cast(arr, NDArrayHandle)
arr = NDArray(handle, writable=False)
min_range = ndarray.min(arr).asscalar()
max_range = ndarray.max(arr).asscalar()
if name in self.min_max_dict:
cur_min_max = self.min_max_dict[name]
self.min_max_dict[name] = (min(cur_min_max[0], min_range),
max(cur_min_max[1], max_range))
else:
self.min_max_dict[name] = (min_range, max_range)
if self.logger is not None:
self.logger.info("Collecting layer %s output min_range=%f, max_range=%f"
% (name, min_range, max_range))
示例13: test_quantize_float32_to_int8
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def test_quantize_float32_to_int8():
shape = rand_shape_nd(4)
data = rand_ndarray(shape, 'default', dtype='float32')
min_range = mx.nd.min(data)
max_range = mx.nd.max(data)
qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
data_np = data.asnumpy()
min_range = min_range.asscalar()
max_range = max_range.asscalar()
real_range = np.maximum(np.abs(min_range), np.abs(max_range))
quantized_range = 127.0
scale = quantized_range / real_range
assert qdata.dtype == np.int8
assert min_val.dtype == np.float32
assert max_val.dtype == np.float32
assert same(min_val.asscalar(), -real_range)
assert same(max_val.asscalar(), real_range)
qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1)
示例14: get_optimal_action
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def get_optimal_action(self, current_node_ids, step_number):
"""Returns the optimal action from the current node."""
goal_number = step_number / self.task_params.num_steps
gtG = self.task.gtG
a = np.zeros((len(current_node_ids), self.task_params.num_actions), dtype=np.int32)
d_dict = self.episode.dist_to_goal[goal_number]
for i, c in enumerate(current_node_ids):
neigh = gtG.vertex(c).out_neighbours()
neigh_edge = gtG.vertex(c).out_edges()
ds = np.array([d_dict[i][int(x)] for x in neigh])
ds_min = np.min(ds)
for i_, e in enumerate(neigh_edge):
if ds[i_] == ds_min:
_ = gtG.ep['action'][e]
a[i, _] = 1
return a
示例15: _line_to_xy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import min [as 別名]
def _line_to_xy(self, line_x, line_y, limit_y_min=None, limit_y_max=None):
point_every = max(1, int(len(line_x) / self.nb_points_max))
points_x = []
points_y = []
curr_sum = 0
counter = 0
last_idx = len(line_x) - 1
for i in range(len(line_x)):
batch_idx = line_x[i]
if batch_idx > self.start_batch_idx:
curr_sum += line_y[i]
counter += 1
if counter >= point_every or i == last_idx:
points_x.append(batch_idx)
y = curr_sum / counter
if limit_y_min is not None and limit_y_max is not None:
y = np.clip(y, limit_y_min, limit_y_max)
elif limit_y_min is not None:
y = max(y, limit_y_min)
elif limit_y_max is not None:
y = min(y, limit_y_max)
points_y.append(y)
counter = 0
curr_sum = 0
return points_x, points_y