本文整理匯總了Python中numpy.median方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.median方法的具體用法?Python numpy.median怎麽用?Python numpy.median使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.median方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _raise_on_mode
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def _raise_on_mode(self, mode):
"""
Checks that the provided query mode is one of the accepted values. If
not, raises a :obj:`ValueError`.
"""
valid_modes = [
'random_sample',
'random_sample_per_pix',
'samples',
'median',
'mean',
'best',
'percentile']
if mode not in valid_modes:
raise ValueError(
'"{}" is not a valid `mode`. Valid modes are:\n'
' {}'.format(mode, valid_modes)
)
示例2: update_hyperparameters
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def update_hyperparameters(self):
"""Update hyperparameters like IoU thresholds for assigner and beta for
SmoothL1 loss based on the training statistics.
Returns:
tuple[float]: the updated ``iou_thr`` and ``beta``.
"""
new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou,
np.mean(self.iou_history))
self.iou_history = []
self.bbox_assigner.pos_iou_thr = new_iou_thr
self.bbox_assigner.neg_iou_thr = new_iou_thr
self.bbox_assigner.min_pos_iou = new_iou_thr
new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta,
np.median(self.beta_history))
self.beta_history = []
self.bbox_head.loss_bbox.beta = new_beta
return new_iou_thr, new_beta
示例3: vote
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def vote(vec, tol):
vec = np.sort(vec)
n = np.arange(len(vec))[::-1]
n = n[:, None] - n[None, :] + 1.0
l = squareform(pdist(vec[:, None], 'minkowski', p=1) + 1e-9)
invalid = (n < len(vec) * 0.4) | (l > tol)
if (~invalid).sum() == 0 or len(vec) < tol:
best_fit = np.median(vec)
p_score = 0
else:
l[invalid] = 1e5
n[invalid] = -1
score = n
max_idx = score.argmax()
max_row = max_idx // len(vec)
max_col = max_idx % len(vec)
assert max_col > max_row
best_fit = vec[max_row:max_col+1].mean()
p_score = (max_col - max_row + 1) / len(vec)
l1_score = np.abs(vec - best_fit).mean()
return best_fit, p_score, l1_score
示例4: _rsp_findpeaks_outliers
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0.3):
# Only consider those extrema that have a minimum vertical distance to
# their direct neighbor, i.e., define outliers in absolute amplitude
# difference between neighboring extrema.
vertical_diff = np.abs(np.diff(rsp_cleaned[extrema]))
median_diff = np.median(vertical_diff)
min_diff = np.where(vertical_diff > (median_diff * amplitude_min))[0]
extrema = extrema[min_diff]
# Make sure that the alternation of peaks and troughs is unbroken. If
# alternation of sign in extdiffs is broken, remove the extrema that
# cause the breaks.
amplitudes = rsp_cleaned[extrema]
extdiffs = np.sign(np.diff(amplitudes))
extdiffs = np.add(extdiffs[0:-1], extdiffs[1:])
removeext = np.where(extdiffs != 0)[0] + 1
extrema = np.delete(extrema, removeext)
amplitudes = np.delete(amplitudes, removeext)
return extrema, amplitudes
示例5: test_ParallellFiltersAndStability
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def test_ParallellFiltersAndStability(self):
x, y = self.model.sample_path(50)
shape = 3000
linear = AffineProcess((f, g), (1., 1.), self.norm, self.norm)
self.model.hidden = linear
filt = SISR(self.model, 1000).set_nparallel(shape).initialize().longfilter(y)
filtermeans = filt.result.filter_means
x = filtermeans[:, :1]
mape = ((x - filtermeans[:, 1:]) / x).abs()
assert mape.median(0)[0].max() < 0.05
示例6: test_ParallelUnscented
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def test_ParallelUnscented(self):
x, y = self.model.sample_path(50)
shape = 30
linear = AffineProcess((f, g), (1., 1.), self.norm, self.norm)
self.model.hidden = linear
filt = SISR(self.model, 1000, proposal=Unscented()).set_nparallel(shape).initialize().longfilter(y)
filtermeans = filt.result.filter_means
x = filtermeans[:, :1]
mape = ((x - filtermeans[:, 1:]) / x).abs()
assert mape.median(0)[0].max() < 0.05
示例7: makeadmask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def makeadmask(cdat,min=True,getsum=False):
nx,ny,nz,Ne,nt = cdat.shape
mask = np.ones((nx,ny,nz),dtype=np.bool)
if min:
mask = cdat[:,:,:,:,:].prod(axis=-1).prod(-1)!=0
return mask
else:
#Make a map of longest echo that a voxel can be sampled with,
#with minimum value of map as X value of voxel that has median
#value in the 1st echo. N.b. larger factor leads to bias to lower TEs
emeans = cdat[:,:,:,:,:].mean(-1)
medv = emeans[:,:,:,0] == stats.scoreatpercentile(emeans[:,:,:,0][emeans[:,:,:,0]!=0],33,interpolation_method='higher')
lthrs = np.squeeze(np.array([ emeans[:,:,:,ee][medv]/3 for ee in range(Ne) ]))
if len(lthrs.shape)==1: lthrs = np.atleast_2d(lthrs).T
lthrs = lthrs[:,lthrs.sum(0).argmax()]
mthr = np.ones([nx,ny,nz,ne])
for ee in range(Ne): mthr[:,:,:,ee]*=lthrs[ee]
mthr = np.abs(emeans[:,:,:,:])>mthr
masksum = np.array(mthr,dtype=np.int).sum(-1)
mask = masksum!=0
if getsum: return mask,masksum
else: return mask
示例8: fill_and_adj_numeric
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def fill_and_adj_numeric(df):
#there are NA for page views, fill median for this == 1
df.pageviews.fillna(df.pageviews.median(), inplace = True)
df.hits.fillna(df.hits.median(), inplace = True)
df.visits.fillna(df.visits.median(), inplace = True)
#are boolean, fill NaN with zeros, add to categorical
df.isTrueDirect.fillna(0, inplace = True)
df.bounces.fillna(0, inplace = True)
df.newVisits.fillna(0, inplace = True)
df.visitNumber.fillna(1, inplace = True)
for col in ['isTrueDirect', 'bounces', 'newVisits']:
df[col] = df[col].astype(int)
return df
示例9: drawNewLocation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def drawNewLocation(ax, image_dict, result, image_scale, radio, sx, sy, event, ar):
x_offset = 0.0
y_offset = 0.0
if sx is not None and sy is not None:
x_offset = sx.val
y_offset = sy.val
vosm = np.copy(image_dict["Visible"])
vosm = OSMTGC.addOSMToImage(result.ways, vosm, pc, image_scale, x_offset, y_offset)
image_dict["Visible Golf"] = vosm
hosm = np.copy(image_dict["Heightmap"]).astype('float32')
hosm = np.clip(hosm, 0.0, 3.5*np.median( hosm[ hosm >= 0.0 ])) # Limit outlier pixels
hosm = hosm / np.max(hosm)
hosm = cv2.cvtColor(hosm, cv2.COLOR_GRAY2RGB)
hosm = OSMTGC.addOSMToImage(result.ways, hosm, pc, image_scale, x_offset, y_offset)
image_dict["Heightmap Golf"] = hosm
# Always set to Visible Golf after drawing new golf features
ax.imshow(image_dict["Visible Golf"], origin='lower')
radio.set_active(1)
示例10: compute_median_rank_at_k
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def compute_median_rank_at_k(tp_fp_list, k):
"""Computes MedianRank@k, where k is the top-scoring labels.
Args:
tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
detection on a single image, where the detections are sorted by score in
descending order. Further, each numpy array element can have boolean or
float values. True positive elements have either value >0.0 or True;
any other value is considered false positive.
k: number of top-scoring proposals to take.
Returns:
median_rank: median rank of all true positive proposals among top k by
score.
"""
ranks = []
for i in range(len(tp_fp_list)):
ranks.append(
np.where(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])] > 0)[0])
concatenated_ranks = np.concatenate(ranks)
return np.median(concatenated_ranks)
示例11: test_laplace_sample
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def test_laplace_sample():
"""Test whether the mean and the variance of the samples are correct."""
mu = np.array([-1, 0., 1.])
beta = np.array([0.5, 1., 2.])
nSamples = 1000000
nParameters = mu.shape[0]
parameters = {"mu": tf.constant(mu),
"beta": tf.constant(beta)}
tfNSamples = tf.constant(nSamples)
r = LaplaceAlgorithms.sample(parameters=parameters,
nSamples=tfNSamples)
with tf.Session() as sess:
r = sess.run(r)
assert(r.shape == (nSamples, nParameters))
muHat = np.median(r, axis=0)
assert(np.allclose(muHat, mu, atol=1e-1))
betaHat = np.sqrt(np.var(r, axis=0)/2.)
assert(np.allclose(betaHat, beta, atol=1e-1))
示例12: mad
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def mad(resid, c=0.6745):
"""
Returns Median-Absolute-Deviation (MAD) for residuals
Args:
resid (np.ndarray): residuals
c (float): scale factor to get to ~standard normal (default: 0.6745)
(i.e. 1 / 0.75iCDF ~= 1.4826 = 1 / 0.6745)
Returns:
float: MAD 'robust' variance estimate
Reference:
http://en.wikipedia.org/wiki/Median_absolute_deviation
"""
# Return median absolute deviation adjusted sigma
return np.median(np.fabs(resid - np.median(resid))) / c
# UTILITY FUNCTIONS
# np.any prevents nopython
示例13: kmeans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def kmeans(self, boxes, k, dist=np.median):
box_number = boxes.shape[0]
distances = np.empty((box_number, k))
last_nearest = np.zeros((box_number,))
np.random.seed()
clusters = boxes[np.random.choice(
box_number, k, replace=False)] # init k clusters
while True:
distances = 1 - self.iou(boxes, clusters)
current_nearest = np.argmin(distances, axis=1)
if (last_nearest == current_nearest).all():
break # clusters won't change
for cluster in range(k):
clusters[cluster] = dist( # update clusters
boxes[current_nearest == cluster], axis=0)
last_nearest = current_nearest
return clusters
示例14: timeDomain
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def timeDomain(NN):
L = len(NN)
ANN = np.mean(NN)
SDNN = np.std(NN)
SDSD = np.std(np.diff(NN))
NN50 = len(np.where(np.diff(NN) > 0.05)[0])
pNN50 = NN50/L
NN20 = len(np.where(np.diff(NN) > 0.02)[0])
pNN20 = NN20/L
rMSSD = np.sqrt((1/L) * sum(np.diff(NN) ** 2))
MedianNN = np.median(NN)
timeDomainFeats = {'ANN': ANN, 'SDNN': SDNN,
'SDSD': SDSD, 'NN50': NN50,
'pNN50': pNN50, 'NN20': NN20,
'pNN20': pNN20, 'rMSSD': rMSSD,
'MedianNN':MedianNN}
return timeDomainFeats
示例15: test_axis_keyword
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import median [as 別名]
def test_axis_keyword(self):
a3 = np.array([[2, 3],
[0, 1],
[6, 7],
[4, 5]])
for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]:
orig = a.copy()
np.median(a, axis=None)
for ax in range(a.ndim):
np.median(a, axis=ax)
assert_array_equal(a, orig)
assert_allclose(np.median(a3, axis=0), [3, 4])
assert_allclose(np.median(a3.T, axis=1), [3, 4])
assert_allclose(np.median(a3), 3.5)
assert_allclose(np.median(a3, axis=None), 3.5)
assert_allclose(np.median(a3.T), 3.5)