當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.mean方法代碼示例

本文整理匯總了Python中numpy.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.mean方法的具體用法?Python numpy.mean怎麽用?Python numpy.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.mean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def __init__(self, bam, keepReads=False):
        self.insertSizes = []
        self.readLengths = []
        self.orientations = []
        self._insertSizeKDE = None
        self.singleEnded = False

        self._insertSizeScores = {} # cache

        try:
            self.insertSizes, self.reads, self.orientations, self.readLengths = sampleInsertSizes(bam, keepReads=keepReads)
            if len(self.insertSizes) > 1:
                logging.info("  insert size mean: {:.2f} std: {:.2f}".format(numpy.mean(self.insertSizes), numpy.std(self.insertSizes)))
        except ValueError as e:
            print("*"*100, "here")
            print("ERROR:", e) 
開發者ID:svviz,項目名稱:svviz,代碼行數:18,代碼來源:insertsizes.py

示例2: extract_sequence_and_score

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def extract_sequence_and_score(graph=None):
    # make dict with positions as keys and lists of ids as values
    pos_to_ids = defaultdict(list)
    for u in graph.nodes():
        if 'position' not in graph.node[u]:  # no position attributes in graph, use the vertex id instead
            raise Exception('Missing "position" attribute in node:%s %s' % (u, graph.node[u]))
        else:
            pos = graph.node[u]['position']
        # accumulate all node ids
        pos_to_ids[pos] += [u]

    # extract sequence of labels and importances
    seq = [None] * len(pos_to_ids)
    score = [0] * len(pos_to_ids)
    for pos in sorted(pos_to_ids):
        ids = pos_to_ids[pos]
        labels = [graph.node[u].get('label', 'N/A') for u in ids]
        # check that all labels for the same position are identical
        assert(sum([1 for label in labels if label == labels[0]]) == len(labels)
               ), 'ERROR: non identical labels referring to same position: %s  %s' % (pos, labels)
        seq[pos] = labels[0]
        # average all importance score for the same position
        importances = [graph.node[u].get('importance', 0) for u in ids]
        score[pos] = np.mean(importances)
    return seq, score 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:27,代碼來源:iterated_maximum_subarray.py

示例3: train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def train(self):
        while (self.epoch < self.option.max_epoch and not self.early_stopped):
            self.one_epoch_train()
            self.one_epoch_valid()
            self.one_epoch_test()
            self.epoch += 1
            model_path = self.saver.save(self.sess, 
                                         self.option.model_path,
                                         global_step=self.epoch)
            print("Model saved at %s" % model_path)
            
            if self.early_stop():
                self.early_stopped = True
                print("Early stopped at epoch %d" % (self.epoch))
        
        all_test_in_top = [np.mean(x[1]) for x in self.test_stats]
        best_test_epoch = np.argmax(all_test_in_top)
        best_test = all_test_in_top[best_test_epoch]
        
        msg = "Best test in top: %0.4f at epoch %d." % (best_test, best_test_epoch + 1)       
        print(msg)
        self.log_file.write(msg + "\n")
        pickle.dump([self.train_stats, self.valid_stats, self.test_stats],
                    open(os.path.join(self.option.this_expsdir, "results.pckl"), "w")) 
開發者ID:fanyangxyz,項目名稱:Neural-LP,代碼行數:26,代碼來源:experiment.py

示例4: _raise_on_mode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def _raise_on_mode(self, mode):
        """
        Checks that the provided query mode is one of the accepted values. If
        not, raises a :obj:`ValueError`.
        """
        valid_modes = [
            'random_sample',
            'random_sample_per_pix',
            'samples',
            'median',
            'mean',
            'best',
            'percentile']

        if mode not in valid_modes:
            raise ValueError(
                '"{}" is not a valid `mode`. Valid modes are:\n'
                '  {}'.format(mode, valid_modes)
            ) 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:21,代碼來源:bayestar.py

示例5: validate_on_lfw

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def validate_on_lfw(model, lfw_160_path):
    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs('validation-LFW-pairs.txt')
    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
    num_pairs = len(actual_issame)

    all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
    for k in tqdm.trange(num_pairs):
        img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
        img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
        batch = np.stack([img1, img2], axis=0)
        embeddings = model.eval_embeddings(batch)
        all_embeddings[k * 2: k * 2 + 2, :] = embeddings

    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:27,代碼來源:face_attack.py

示例6: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def __init__(self,node_i, node_j, node_k, node_l,t, E, mu, rho, name=None):
        #8-nodes
        self.__nodes.append(node_i)
        self.__nodes.append(node_j)
        self.__nodes.append(node_k)
        self.__nodes.append(node_l)

        self.__t=t
        
        center=np.mean([node_i,node_j,node_k,node_l])
#        self.local_csys = CoordinateSystem.cartisian(center,nodes[4],nodes[5])
        
        self.__alpha=[]#the angle between edge and local-x, to be added
        self.__alpha.append(self.angle(node_i,node_j,self.local_csys.x))
        self.__alpha.append(self.angle(node_j,node_k,self.local_csys.x))
        self.__alpha.append(self.angle(node_k,node_l,self.local_csys.x))
        self.__alpha.append(self.angle(node_l,node_i,self.local_csys.x))

        self.__K=np.zeros((24,24)) 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:21,代碼來源:element.py

示例7: _bbox_forward_train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
                            img_metas):
        num_imgs = len(img_metas)
        rois = bbox2roi([res.bboxes for res in sampling_results])
        bbox_results = self._bbox_forward(x, rois)

        bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes,
                                                  gt_labels, self.train_cfg)
        # record the `beta_topk`-th smallest target
        # `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets
        # and bbox_weights, respectively
        pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1)
        num_pos = len(pos_inds)
        cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1)
        beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs,
                        num_pos)
        cur_target = torch.kthvalue(cur_target, beta_topk)[0].item()
        self.beta_history.append(cur_target)
        loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
                                        bbox_results['bbox_pred'], rois,
                                        *bbox_targets)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:26,代碼來源:dynamic_roi_head.py

示例8: update_hyperparameters

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def update_hyperparameters(self):
        """Update hyperparameters like IoU thresholds for assigner and beta for
        SmoothL1 loss based on the training statistics.

        Returns:
            tuple[float]: the updated ``iou_thr`` and ``beta``.
        """
        new_iou_thr = max(self.train_cfg.dynamic_rcnn.initial_iou,
                          np.mean(self.iou_history))
        self.iou_history = []
        self.bbox_assigner.pos_iou_thr = new_iou_thr
        self.bbox_assigner.neg_iou_thr = new_iou_thr
        self.bbox_assigner.min_pos_iou = new_iou_thr
        new_beta = min(self.train_cfg.dynamic_rcnn.initial_beta,
                       np.median(self.beta_history))
        self.beta_history = []
        self.bbox_head.loss_bbox.beta = new_beta
        return new_iou_thr, new_beta 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:20,代碼來源:dynamic_roi_head.py

示例9: fast_eval_recall

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None):
        gt_bboxes = []
        for i in range(len(self.img_ids)):
            ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i])
            ann_info = self.coco.load_anns(ann_ids)
            if len(ann_info) == 0:
                gt_bboxes.append(np.zeros((0, 4)))
                continue
            bboxes = []
            for ann in ann_info:
                if ann.get('ignore', False) or ann['iscrowd']:
                    continue
                x1, y1, w, h = ann['bbox']
                bboxes.append([x1, y1, x1 + w, y1 + h])
            bboxes = np.array(bboxes, dtype=np.float32)
            if bboxes.shape[0] == 0:
                bboxes = np.zeros((0, 4))
            gt_bboxes.append(bboxes)

        recalls = eval_recalls(
            gt_bboxes, results, proposal_nums, iou_thrs, logger=logger)
        ar = recalls.mean(axis=1)
        return ar 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:25,代碼來源:coco.py

示例10: cal_train_time

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def cal_train_time(log_dicts, args):
    for i, log_dict in enumerate(log_dicts):
        print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}')
        all_times = []
        for epoch in log_dict.keys():
            if args.include_outliers:
                all_times.append(log_dict[epoch]['time'])
            else:
                all_times.append(log_dict[epoch]['time'][1:])
        all_times = np.array(all_times)
        epoch_ave_time = all_times.mean(-1)
        slowest_epoch = epoch_ave_time.argmax()
        fastest_epoch = epoch_ave_time.argmin()
        std_over_epoch = epoch_ave_time.std()
        print(f'slowest epoch {slowest_epoch + 1}, '
              f'average time is {epoch_ave_time[slowest_epoch]:.4f}')
        print(f'fastest epoch {fastest_epoch + 1}, '
              f'average time is {epoch_ave_time[fastest_epoch]:.4f}')
        print(f'time std over epochs is {std_over_epoch:.4f}')
        print(f'average iter time: {np.mean(all_times):.4f} s/iter')
        print() 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:23,代碼來源:analyze_logs.py

示例11: test_generate_np_targeted_gives_adversarial_example

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def test_generate_np_targeted_gives_adversarial_example(self):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), np.random.randint(0, 1, 100)] = 1
        x_adv = self.attack.generate_np(x_val, max_iterations=100,
                                        binary_search_steps=3,
                                        initial_const=1,
                                        clip_min=-5, clip_max=5,
                                        batch_size=100, y_target=feed_labs)

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(np.argmax(feed_labs, axis=1) == new_labs)
                        > 0.9) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:18,代碼來源:test_attacks.py

示例12: test_generate_gives_adversarial_example

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def test_generate_gives_adversarial_example(self):

        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), orig_labs] = 1
        x = tf.placeholder(tf.float32, x_val.shape)
        y = tf.placeholder(tf.float32, feed_labs.shape)

        x_adv_p = self.attack.generate(x, max_iterations=100,
                                       binary_search_steps=3,
                                       initial_const=1,
                                       clip_min=-5, clip_max=5,
                                       batch_size=100, y=y)
        self.assertEqual(x_val.shape, x_adv_p.shape)
        x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs})

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:24,代碼來源:test_attacks.py

示例13: test_attack_strength

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def test_attack_strength(self):
        """
        If clipping is not done at each iteration (not using clip_min and
        clip_max), this attack fails by
        np.mean(orig_labels == new_labels) == .5
        """
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        x_adv = self.attack.generate_np(x_val, eps=1.0, eps_iter=0.05,
                                        clip_min=0.5, clip_max=0.7,
                                        nb_iter=5)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)
        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:18,代碼來源:test_attacks.py

示例14: get_graph_stats

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def get_graph_stats(graph_obj_handle, prop='degrees'):
    # if prop == 'degrees':
    num_cores = multiprocessing.cpu_count()
    inputs = [int(i*len(graph_obj_handle)/num_cores) for i in range(num_cores)] + [len(graph_obj_handle)]
    res = Parallel(n_jobs=num_cores)(delayed(get_values)(graph_obj_handle, inputs[i], inputs[i+1], prop) for i in range(num_cores))

    stat_dict = {}

    if 'degrees' in prop:
        stat_dict['degrees'] = list(set([d for core_res in res for file_res in core_res for d in file_res['degrees']]))
    if 'edge_labels' in prop:
        stat_dict['edge_labels'] = list(set([d for core_res in res for file_res in core_res for d in file_res['edge_labels']]))
    if 'target_mean' in prop or 'target_std' in prop:
        param = np.array([file_res['params'] for core_res in res for file_res in core_res])
    if 'target_mean' in prop:
        stat_dict['target_mean'] = np.mean(param, axis=0)
    if 'target_std' in prop:
        stat_dict['target_std'] = np.std(param, axis=0)

    return stat_dict 
開發者ID:priba,項目名稱:nmp_qc,代碼行數:22,代碼來源:utils.py

示例15: __forward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import mean [as 別名]
def __forward(self, x, train_flg):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)

        if train_flg:
            mu = x.mean(axis=0)
            xc = x - mu
            var = np.mean(xc ** 2, axis=0)
            std = np.sqrt(var + 10e-7)
            xn = xc / std

            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mu
            self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))

        out = self.gamma * xn + self.beta
        return out 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:27,代碼來源:layers.py


注:本文中的numpy.mean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。