本文整理匯總了Python中numpy.max方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.max方法的具體用法?Python numpy.max怎麽用?Python numpy.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_radians
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def to_radians(arr, is_delta=False):
"""Force data with units either degrees or radians to be radians."""
# Infer the units from embedded metadata, if it's there.
try:
units = arr.units
except AttributeError:
pass
else:
if units.lower().startswith('degrees'):
warn_msg = ("Conversion applied: degrees -> radians to array: "
"{}".format(arr))
logging.debug(warn_msg)
return np.deg2rad(arr)
# Otherwise, assume degrees if the values are sufficiently large.
threshold = 0.1*np.pi if is_delta else 4*np.pi
if np.max(np.abs(arr)) > threshold:
warn_msg = ("Conversion applied: degrees -> radians to array: "
"{}".format(arr))
logging.debug(warn_msg)
return np.deg2rad(arr)
return arr
示例2: load_RSM
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def load_RSM(filename):
om, tt, psd = xu.io.getxrdml_map(filename)
om = np.deg2rad(om)
tt = np.deg2rad(tt)
wavelength = 1.54056
q_y = (1 / wavelength) * (np.cos(tt) - np.cos(2 * om - tt))
q_x = (1 / wavelength) * (np.sin(tt) - np.sin(2 * om - tt))
xi = np.linspace(np.min(q_x), np.max(q_x), 100)
yi = np.linspace(np.min(q_y), np.max(q_y), 100)
psd[psd < 1] = 1
data_grid = griddata(
(q_x, q_y), psd, (xi[None, :], yi[:, None]), fill_value=1, method="cubic"
)
nx, ny = data_grid.shape
range_values = [np.min(q_x), np.max(q_x), np.min(q_y), np.max(q_y)]
output_data = (
Panel(np.log(data_grid).reshape(nx, ny, 1), minor_axis=["RSM"])
.transpose(2, 0, 1)
.to_frame()
)
return range_values, output_data
示例3: create_mnist
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def create_mnist(tfrecord_dir, mnist_dir):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
labels = np.frombuffer(file.read(), np.uint8, offset=8)
images = images.reshape(-1, 1, 28, 28)
images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
assert labels.shape == (60000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
示例4: create_mnistrgb
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
print('Loading MNIST from "%s"' % mnist_dir)
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
images = images.reshape(-1, 28, 28)
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
with TFRecordExporter(tfrecord_dir, num_images) as tfr:
rnd = np.random.RandomState(random_seed)
for idx in range(num_images):
tfr.add_image(images[rnd.randint(images.shape[0], size=3)])
#----------------------------------------------------------------------------
示例5: create_cifar100
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def create_cifar100(tfrecord_dir, cifar100_dir):
print('Loading CIFAR-100 from "%s"' % cifar100_dir)
import pickle
with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images = data['data'].reshape(-1, 3, 32, 32)
labels = np.array(data['fine_labels'])
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype == np.int32
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 99
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
示例6: convert_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def convert_image(self, filename):
pic = img.imread(filename)
# Set FFT size to be double the image size so that the edge of the spectrum stays clear
# preventing some bandfilter artifacts
self.NFFT = 2*pic.shape[1]
# Repeat image lines until each one comes often enough to reach the desired line time
ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256.
# Embed image in center bins of the FFT
fftall = np.zeros((ffts.shape[0], self.NFFT))
startbin = int(self.NFFT/4)
fftall[:, startbin:(startbin+pic.shape[1])] = ffts
# Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output
# The phases won't be visible in the spectrum
phases = 2*np.pi*np.random.rand(*fftall.shape)
rffts = fftall * np.exp(1j*phases)
# Perform the FFT per image line, then concatenate them to form the final signal
timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT))
linear = timedata.flatten()
linear = linear / np.max(np.abs(linear))
return linear
示例7: wave2input_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def wave2input_image(wave, window, pos=0, pad=0):
wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
wave_image *= window
spectrum_image = np.fft.fft(wave_image, axis=1)
input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)
np.clip(input_image, 1000, None, out=input_image)
np.log(input_image, out=input_image)
input_image += bias
input_image /= scale
if np.max(input_image) > 0.95:
print('input image max bigger than 0.95', np.max(input_image))
if np.min(input_image) < 0.05:
print('input image min smaller than 0.05', np.min(input_image))
return input_image
示例8: forward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def forward(self, x):
N, C, H, W = x.shape
out_h = int(1 + (H - self.pool_h) / self.stride)
out_w = int(1 + (W - self.pool_w) / self.stride)
col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
col = col.reshape(-1, self.pool_h * self.pool_w)
arg_max = np.argmax(col, axis=1)
out = np.max(col, axis=1)
out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)
self.x = x
self.arg_max = arg_max
return out
示例9: extract_logmel
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def extract_logmel(y, sr, size=3):
"""
extract log mel spectrogram feature
:param y: the input signal (audio time series)
:param sr: sample rate of 'y'
:param size: the length (seconds) of random crop from original audio, default as 3 seconds
:return: log-mel spectrogram feature
"""
# normalization
y = y.astype(np.float32)
normalization_factor = 1 / np.max(np.abs(y))
y = y * normalization_factor
# random crop
start = random.randint(0, len(y) - size * sr)
y = y[start: start + size * sr]
# extract log mel spectrogram #####
melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024, n_mels=60)
logmelspec = librosa.power_to_db(melspectrogram)
return logmelspec
示例10: extract_mfcc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def extract_mfcc(y, sr, size=3):
"""
extract MFCC feature
:param y: np.ndarray [shape=(n,)], real-valued the input signal (audio time series)
:param sr: sample rate of 'y'
:param size: the length (seconds) of random crop from original audio, default as 3 seconds
:return: MFCC feature
"""
# normalization
y = y.astype(np.float32)
normalization_factor = 1 / np.max(np.abs(y))
y = y * normalization_factor
# random crop
start = random.randint(0, len(y) - size * sr)
y = y[start: start + size * sr]
# extract log mel spectrogram #####
melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024)
mfcc = librosa.feature.mfcc(S=librosa.power_to_db(melspectrogram), n_mfcc=20)
mfcc_delta = librosa.feature.delta(mfcc)
mfcc_delta_delta = librosa.feature.delta(mfcc_delta)
mfcc_comb = np.concatenate([mfcc, mfcc_delta, mfcc_delta_delta], axis=0)
return mfcc_comb
示例11: cortex_cmap_plot_2D
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def cortex_cmap_plot_2D(the_map, zs, cmap, vmin=None, vmax=None, axes=None, triangulation=None):
'''
cortex_cmap_plot_2D(map, zs, cmap, axes) plots the given cortical map values zs on the given
axes using the given given color map and yields the resulting polygon collection object.
cortex_cmap_plot_2D(map, zs, cmap) uses matplotlib.pyplot.gca() for the axes.
The following options may be passed:
* triangulation (None) may specify the triangularion object for the mesh if it has already
been created; otherwise it is generated fresh.
* axes (None) specify the axes on which to plot; if None, then matplotlib.pyplot.gca() is
used. If Ellipsis, then a tuple (triangulation, z, cmap) is returned; to recreate the plot,
one would call:
axes.tripcolor(triangulation, z, cmap, shading='gouraud', vmin=vmin, vmax=vmax)
* vmin (default: None) specifies the minimum value for scaling the property when one is passed
as the color option. None means to use the min value of the property.
* vmax (default: None) specifies the maximum value for scaling the property when one is passed
as the color option. None means to use the max value of the property.
'''
if triangulation is None:
triangulation = matplotlib.tri.Triangulation(the_map.coordinates[0], the_map.coordinates[1],
triangles=the_map.tess.indexed_faces.T)
if axes is Ellipsis: return (triangulation, zs, cmap)
return axes.tripcolor(triangulation, zs, cmap=cmap, shading='gouraud', vmin=vmin, vmax=vmax)
示例12: db
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def db(audio):
if len(audio.shape) > 1:
maxx = np.max(np.abs(audio), axis=1)
return 20 * np.log10(maxx) if np.any(maxx != 0) else np.array([0])
maxx = np.max(np.abs(audio))
return 20 * np.log10(maxx) if maxx != 0 else np.array([0])
示例13: get_new_pop
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def get_new_pop(elite_pop, elite_pop_scores, pop_size):
scores_logits = np.exp(elite_pop_scores - elite_pop_scores.max())
elite_pop_probs = scores_logits / scores_logits.sum()
cand1 = elite_pop[np.random.choice(len(elite_pop), p=elite_pop_probs, size=pop_size)]
cand2 = elite_pop[np.random.choice(len(elite_pop), p=elite_pop_probs, size=pop_size)]
mask = np.random.rand(pop_size, elite_pop.shape[1]) < 0.5
next_pop = mask * cand1 + (1 - mask) * cand2
return next_pop
示例14: posterior
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def posterior(self, psi):
"""
Class-posterior estimation.
Parameters
----------
psi : array
weighted data-classifier output (N samples by K classes)
Returns
-------
pyx : array
class-posterior estimation (N samples by K classes)
"""
# Data shape
N, K = psi.shape
# Preallocate array
pyx = np.zeros((N, K))
# Subtract maximum value for numerical stability
psi = (psi.T - np.max(psi, axis=1).T).T
# Loop over classes
for k in range(K):
# Estimate posterior p^(Y=y | x_i)
pyx[:, k] = np.exp(psi[:, k]) / np.sum(np.exp(psi), axis=1)
return pyx
示例15: predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import max [as 別名]
def predict(self, Z):
"""
Make predictions on new dataset.
Parameters
----------
Z : array
new data set (M samples by D features)
Returns
-------
preds : array
label predictions (M samples by 1)
"""
# Data shape
M, D = Z.shape
# If classifier is trained, check for same dimensionality
if self.is_trained:
if not self.train_data_dim == D:
raise ValueError('''Test data is of different dimensionality
than training data.''')
# Compute posteriors
post = self.predict_proba(Z)
# Predictions through max-posteriors
preds = np.argmax(post, axis=1)
# Map predictions back to original labels
return self.classes[preds]