本文整理匯總了Python中numpy.ma.power方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.power方法的具體用法?Python ma.power怎麽用?Python ma.power使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.power方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: moment
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def moment(a, moment=1, axis=0):
a, axis = _chk_asarray(a, axis)
if moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
mn = ma.expand_dims(a.mean(axis=axis), axis)
s = ma.power((a-mn), moment)
return s.mean(axis=axis)
示例2: kurtosistest
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def kurtosistest(a, axis=0):
a, axis = _chk_asarray(a, axis)
n = a.count(axis=axis).astype(float)
if np.min(n) < 20:
warnings.warn(
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
np.min(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) / (n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
x = (b2-E)/ma.sqrt(varb2)
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
(n*(n-2)*(n-3)))
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2./(9.0*A)
denom = 1 + x*ma.sqrt(2/(A-4.0))
denom[denom < 0] = masked
term2 = ma.power((1-2.0/A)/denom,1/3.0)
Z = (term1 - term2) / np.sqrt(2/(9.0*A))
return Z, (1.0-stats.zprob(Z))*2
示例3: transform_non_affine
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def transform_non_affine(self, a):
return ma.power(10.0, a) / 10.0
示例4: __call__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
gamma = self.gamma
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result.fill(0)
else:
res_mask = result.data < 0
if clip:
mask = ma.getmask(result)
result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
mask=mask)
resdat = result.data
resdat -= vmin
np.power(resdat, gamma, resdat)
resdat /= (vmax - vmin) ** gamma
result = np.ma.array(resdat, mask=result.mask, copy=False)
result[res_mask] = 0
if is_scalar:
result = result[0]
return result
示例5: inverse
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
gamma = self.gamma
vmin, vmax = self.vmin, self.vmax
if cbook.iterable(value):
val = ma.asarray(value)
return ma.power(value, 1. / gamma) * (vmax - vmin) + vmin
else:
return pow(value, 1. / gamma) * (vmax - vmin) + vmin
示例6: transform_non_affine
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import power [as 別名]
def transform_non_affine(self, a):
return ma.power(self.base, a)