本文整理匯總了Python中numpy.ma.nomask方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.nomask方法的具體用法?Python ma.nomask怎麽用?Python ma.nomask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.nomask方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_hardmask
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_hardmask(self):
# Test hardmask
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
assert_(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
assert_(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
assert_(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
示例2: test_hardmask
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_hardmask(self):
# Test hardmask
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
self.assertTrue(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
self.assertTrue(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
self.assertTrue(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
示例3: test_set_mask
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_set_mask(self):
base = self.base.copy()
mbase = base.view(mrecarray)
# Set the mask to True .......................
mbase.mask = masked
assert_equal(ma.getmaskarray(mbase['b']), [1]*5)
assert_equal(mbase['a']._mask, mbase['b']._mask)
assert_equal(mbase['a']._mask, mbase['c']._mask)
assert_equal(mbase._mask.tolist(),
np.array([(1, 1, 1)]*5, dtype=bool))
# Delete the mask ............................
mbase.mask = nomask
assert_equal(ma.getmaskarray(mbase['c']), [0]*5)
assert_equal(mbase._mask.tolist(),
np.array([(0, 0, 0)]*5, dtype=bool))
#
示例4: test_hardmask
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_hardmask(self):
"Test hardmask"
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
self.assertTrue(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
self.assertTrue(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
self.assertTrue(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
#
示例5: _init
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def _init(self):
if True: # not self._initialized:
self._set_transform()
_pivot = self.Q.pivot
self.Q.pivot = self.pivot[self.labelpos]
# Hack: save and restore the Umask
_mask = self.Q.Umask
self.Q.Umask = ma.nomask
self.verts = self.Q._make_verts(np.array([self.U]),
np.zeros((1,)))
self.Q.Umask = _mask
self.Q.pivot = _pivot
kw = self.Q.polykw
kw.update(self.kw)
self.vector = collections.PolyCollection(
self.verts,
offsets=[(self.X, self.Y)],
transOffset=self.get_transform(),
**kw)
if self.color is not None:
self.vector.set_color(self.color)
self.vector.set_transform(self.Q.get_transform())
self._initialized = True
示例6: pointbiserialr
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def pointbiserialr(x, y):
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data ..........
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
#
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
#
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
#
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
示例7: set_UVC
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def set_UVC(self, U, V, C=None):
U = ma.masked_invalid(U, copy=False).ravel()
V = ma.masked_invalid(V, copy=False).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=False).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
示例8: set_UVC
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def set_UVC(self, U, V, C=None):
# We need to ensure we have a copy, not a reference
# to an array that might change before draw().
U = ma.masked_invalid(U, copy=True).ravel()
V = ma.masked_invalid(V, copy=True).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=True).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
self.stale = True
示例9: test_get
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_get(self):
# Tests fields retrieval
base = self.base.copy()
mbase = base.view(mrecarray)
# As fields..........
for field in ('a', 'b', 'c'):
assert_equal(getattr(mbase, field), mbase[field])
assert_equal(base[field], mbase[field])
# as elements .......
mbase_first = mbase[0]
assert_(isinstance(mbase_first, mrecarray))
assert_equal(mbase_first.dtype, mbase.dtype)
assert_equal(mbase_first.tolist(), (1, 1.1, b'one'))
# Used to be mask, now it's recordmask
assert_equal(mbase_first.recordmask, nomask)
assert_equal(mbase_first._mask.item(), (False, False, False))
assert_equal(mbase_first['a'], mbase['a'][0])
mbase_last = mbase[-1]
assert_(isinstance(mbase_last, mrecarray))
assert_equal(mbase_last.dtype, mbase.dtype)
assert_equal(mbase_last.tolist(), (None, None, None))
# Used to be mask, now it's recordmask
assert_equal(mbase_last.recordmask, True)
assert_equal(mbase_last._mask.item(), (True, True, True))
assert_equal(mbase_last['a'], mbase['a'][-1])
assert_((mbase_last['a'] is masked))
# as slice ..........
mbase_sl = mbase[:2]
assert_(isinstance(mbase_sl, mrecarray))
assert_equal(mbase_sl.dtype, mbase.dtype)
# Used to be mask, now it's recordmask
assert_equal(mbase_sl.recordmask, [0, 1])
assert_equal_records(mbase_sl.mask,
np.array([(False, False, False),
(True, True, True)],
dtype=mbase._mask.dtype))
assert_equal_records(mbase_sl, base[:2].view(mrecarray))
for field in ('a', 'b', 'c'):
assert_equal(getattr(mbase_sl, field), base[:2][field])
示例10: test_set_mask
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_set_mask(self):
base = self.base.copy()
mbase = base.view(mrecarray)
# Set the mask to True .......................
mbase.mask = masked
assert_equal(ma.getmaskarray(mbase['b']), [1]*5)
assert_equal(mbase['a']._mask, mbase['b']._mask)
assert_equal(mbase['a']._mask, mbase['c']._mask)
assert_equal(mbase._mask.tolist(),
np.array([(1, 1, 1)]*5, dtype=bool))
# Delete the mask ............................
mbase.mask = nomask
assert_equal(ma.getmaskarray(mbase['c']), [0]*5)
assert_equal(mbase._mask.tolist(),
np.array([(0, 0, 0)]*5, dtype=bool))
示例11: __init__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def __init__(self,vals,vals_dmin,vals_dmax,mask=ma.nomask):
super(UncertContainer, self).__init__()
# If input data already masked arrays extract unmasked data
if ma.isMaskedArray(vals):
vals = vals.data
if ma.isMaskedArray(vals_dmin):
vals_dmin = vals_dmin.data
if ma.isMaskedArray(vals_dmax):
vals_dmax = vals_dmax.data
# Adjust negative values
ineg = np.where(vals_dmin <= 0.0)
vals_dmin[ineg] = TOL*vals[ineg]
# Calculate weight based on fractional uncertainty
diff = vals_dmax - vals_dmin
diff_m = ma.masked_where(vals_dmax == vals_dmin,diff)
self.vals = ma.masked_where(vals == 0.0,vals)
self.wt = (self.vals/diff_m)**2
self.uncert = diff_m/self.vals
self.wt.fill_value = np.inf
self.uncert.fill_vaule = np.inf
assert np.all(self.wt.mask == self.uncert.mask)
# Mask data if uncertainty is not finite or if any of the inputs were
# already masked
mm = ma.mask_or(self.wt.mask,mask)
self.vals.mask = mm
self.wt.mask = mm
self.uncert.mask = mm
self.dmin = ma.array(vals_dmin,mask=mm,fill_value=np.inf)
self.dmax = ma.array(vals_dmax,mask=mm,fill_value=np.inf)
self.mask = ma.getmaskarray(self.vals)
示例12: linregress
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def linregress(x, y=None):
"""
Linear regression calculation
Note that the non-masked version is used, and that this docstring is
replaced by the non-masked docstring + some info on missing data.
"""
if y is None:
x = ma.array(x)
if x.shape[0] == 2:
x, y = x
elif x.shape[1] == 2:
x, y = x.T
else:
msg = ("If only `x` is given as input, it has to be of shape "
"(2, N) or (N, 2), provided shape was %s" % str(x.shape))
raise ValueError(msg)
else:
x = ma.array(x)
y = ma.array(y)
x = x.flatten()
y = y.flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
if m is not nomask:
x = ma.array(x, mask=m)
y = ma.array(y, mask=m)
if np.any(~m):
slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m],
y.data[~m])
else:
# All data is masked
return None, None, None, None, None
else:
slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data)
return LinregressResult(slope, intercept, r, prob, sterrest)
示例13: test_get
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import nomask [as 別名]
def test_get(self):
# Tests fields retrieval
base = self.base.copy()
mbase = base.view(mrecarray)
# As fields..........
for field in ('a', 'b', 'c'):
assert_equal(getattr(mbase, field), mbase[field])
assert_equal(base[field], mbase[field])
# as elements .......
mbase_first = mbase[0]
assert_(isinstance(mbase_first, mrecarray))
assert_equal(mbase_first.dtype, mbase.dtype)
assert_equal(mbase_first.tolist(), (1, 1.1, asbytes('one')))
# Used to be mask, now it's recordmask
assert_equal(mbase_first.recordmask, nomask)
assert_equal(mbase_first._mask.item(), (False, False, False))
assert_equal(mbase_first['a'], mbase['a'][0])
mbase_last = mbase[-1]
assert_(isinstance(mbase_last, mrecarray))
assert_equal(mbase_last.dtype, mbase.dtype)
assert_equal(mbase_last.tolist(), (None, None, None))
# Used to be mask, now it's recordmask
assert_equal(mbase_last.recordmask, True)
assert_equal(mbase_last._mask.item(), (True, True, True))
assert_equal(mbase_last['a'], mbase['a'][-1])
assert_((mbase_last['a'] is masked))
# as slice ..........
mbase_sl = mbase[:2]
assert_(isinstance(mbase_sl, mrecarray))
assert_equal(mbase_sl.dtype, mbase.dtype)
# Used to be mask, now it's recordmask
assert_equal(mbase_sl.recordmask, [0, 1])
assert_equal_records(mbase_sl.mask,
np.array([(False, False, False),
(True, True, True)],
dtype=mbase._mask.dtype))
assert_equal_records(mbase_sl, base[:2].view(mrecarray))
for field in ('a', 'b', 'c'):
assert_equal(getattr(mbase_sl, field), base[:2][field])