本文整理匯總了Python中numpy.ma.masked_all方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.masked_all方法的具體用法?Python ma.masked_all怎麽用?Python ma.masked_all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.masked_all方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_constructor_maskedarray_hardened
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_maskedarray_hardened(self):
# Check numpy masked arrays with hard masks -- from GH24574
mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask()
result = pd.DataFrame(mat_hard, columns=['A', 'B'], index=[1, 2])
expected = pd.DataFrame({
'A': [np.nan, np.nan],
'B': [np.nan, np.nan]},
columns=['A', 'B'],
index=[1, 2],
dtype=float)
tm.assert_frame_equal(result, expected)
# Check case where mask is hard but no data are masked
mat_hard = ma.ones((2, 2), dtype=float).harden_mask()
result = pd.DataFrame(mat_hard, columns=['A', 'B'], index=[1, 2])
expected = pd.DataFrame({
'A': [1.0, 1.0],
'B': [1.0, 1.0]},
columns=['A', 'B'],
index=[1, 2],
dtype=float)
tm.assert_frame_equal(result, expected)
示例2: make_mosaic
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def make_mosaic(images, num_rows, num_cols, border=1, class_names=None):
num_images = len(images)
image_shape = images.shape[1:]
mosaic = ma.masked_all(
(num_rows * image_shape[0] + (num_rows - 1) * border,
num_cols * image_shape[1] + (num_cols - 1) * border),
dtype=np.float32)
paddedh = image_shape[0] + border
paddedw = image_shape[1] + border
for image_arg in range(num_images):
row = int(np.floor(image_arg / num_cols))
col = image_arg % num_cols
image = np.squeeze(images[image_arg])
image_shape = image.shape
mosaic[row * paddedh:row * paddedh + image_shape[0],
col * paddedw:col * paddedw + image_shape[1]] = image
return mosaic
示例3: make_mosaic
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def make_mosaic(images, num_rows, num_cols, border=1, class_names=None):
num_images = len(images)
image_shape = images.shape[1:]
mosaic = ma.masked_all((num_rows * image_shape[0] + (num_rows - 1) * border,
num_cols * image_shape[1] + (num_cols - 1) * border),
dtype=np.float32)
paddedh = image_shape[0] + border
paddedw = image_shape[1] + border
for image_arg in range(num_images):
row = int(np.floor(image_arg / num_cols))
col = image_arg % num_cols
image = np.squeeze(images[image_arg])
image_shape = image.shape
mosaic[row * paddedh:row * paddedh + image_shape[0],
col * paddedw:col * paddedw + image_shape[1]] = image
return mosaic
示例4: test_constructor_maskedarray_hardened
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_maskedarray_hardened(self):
# Check numpy masked arrays with hard masks -- from GH24574
data = ma.masked_all((3, ), dtype=float).harden_mask()
result = pd.Series(data)
expected = pd.Series([nan, nan, nan])
tm.assert_series_equal(result, expected)
示例5: test_constructor_maskedarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_maskedarray(self):
self._check_basic_constructor(ma.masked_all)
# Check non-masked values
mat = ma.masked_all((2, 3), dtype=float)
mat[0, 0] = 1.0
mat[1, 2] = 2.0
frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])
assert 1.0 == frame['A'][1]
assert 2.0 == frame['C'][2]
# what is this even checking??
mat = ma.masked_all((2, 3), dtype=float)
frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])
assert np.all(~np.asarray(frame == frame))
示例6: _add_row_block
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def _add_row_block(self):
"""add a block of rows to the data array
"""
block = ma.masked_all((self._row_block_size,), dtype=self.dtype)
self._set_data(ma.append(self._data, block))
示例7: make_mosaic
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def make_mosaic(imgs, nrows, ncols, border=1):
"""
Given a set of images with all the same shape, makes a
mosaic with nrows and ncols
"""
nimgs = imgs.shape[0]
imshape = imgs.shape[1:]
mosaic = ma.masked_all((nrows * imshape[0] + (nrows - 1) * border,
ncols * imshape[1] + (ncols - 1) * border),
dtype=np.float32)
paddedh = imshape[0] + border
paddedw = imshape[1] + border
for i in xrange(nimgs):
row = int(np.floor(i / ncols))
col = i % ncols
mosaic[row * paddedh:row * paddedh + imshape[0],
col * paddedw:col * paddedw + imshape[1]] = imgs[i]
return mosaic
# -----------------------------------------------------------------------------
# https://blog.keras.io/
# how-convolutional-neural-networks-see-the-world.html
# http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/
# -----------------------------------------------------------------------------
示例8: draw
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def draw(self, size=1, spaces=None):
"""
Draw samples from the transdimensional distribution.
"""
if spaces is not None:
if len(spaces) != size:
raise ValueError('Sample size inconsistent with number of spaces saved')
space_inds = np.empty(size)
for space_id, space in enumerate(self.spaces):
subspace = np.all(spaces == space, axis=1)
space_inds[subspace] = space_id
else:
# Draws spaces randomly with the assigned weights
cumulative_weights = np.cumsum(np.exp(self._logweights))
space_inds = np.searchsorted(cumulative_weights, np.random.rand(size))
draws = ma.masked_all((size, self._max_ndim))
for space_id in range(len(self.spaces)):
sel = space_inds == space_id
n_fixedd = np.count_nonzero(sel)
if n_fixedd > 0:
# Populate only the valid entries for this parameter space
draws[np.ix_(sel, self._spaces[space_id])] = self.kdes[space_id].draw(n_fixedd)
return draws
示例9: test_constructor_mrecarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_mrecarray(self):
# Ensure mrecarray produces frame identical to dict of masked arrays
# from GH3479
assert_fr_equal = functools.partial(tm.assert_frame_equal,
check_index_type=True,
check_column_type=True,
check_frame_type=True)
arrays = [
('float', np.array([1.5, 2.0])),
('int', np.array([1, 2])),
('str', np.array(['abc', 'def'])),
]
for name, arr in arrays[:]:
arrays.append(('masked1_' + name,
np.ma.masked_array(arr, mask=[False, True])))
arrays.append(('masked_all', np.ma.masked_all((2,))))
arrays.append(('masked_none',
np.ma.masked_array([1.0, 2.5], mask=False)))
# call assert_frame_equal for all selections of 3 arrays
for comb in itertools.combinations(arrays, 3):
names, data = zip(*comb)
mrecs = ma.mrecords.fromarrays(data, names=names)
# fill the comb
comb = {k: (v.filled() if hasattr(v, 'filled') else v)
for k, v in comb}
expected = DataFrame(comb, columns=names)
result = DataFrame(mrecs)
assert_fr_equal(result, expected)
# specify columns
expected = DataFrame(comb, columns=names[::-1])
result = DataFrame(mrecs, columns=names[::-1])
assert_fr_equal(result, expected)
# specify index
expected = DataFrame(comb, columns=names, index=[1, 2])
result = DataFrame(mrecs, index=[1, 2])
assert_fr_equal(result, expected)
示例10: test_constructor_mrecarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_mrecarray(self):
# Ensure mrecarray produces frame identical to dict of masked arrays
# from GH3479
assert_fr_equal = functools.partial(tm.assert_frame_equal,
check_index_type=True,
check_column_type=True,
check_frame_type=True)
arrays = [
('float', np.array([1.5, 2.0])),
('int', np.array([1, 2])),
('str', np.array(['abc', 'def'])),
]
for name, arr in arrays[:]:
arrays.append(('masked1_' + name,
np.ma.masked_array(arr, mask=[False, True])))
arrays.append(('masked_all', np.ma.masked_all((2,))))
arrays.append(('masked_none',
np.ma.masked_array([1.0, 2.5], mask=False)))
# call assert_frame_equal for all selections of 3 arrays
for comb in itertools.combinations(arrays, 3):
names, data = zip(*comb)
mrecs = mrecords.fromarrays(data, names=names)
# fill the comb
comb = {k: (v.filled() if hasattr(v, 'filled') else v)
for k, v in comb}
expected = DataFrame(comb, columns=names)
result = DataFrame(mrecs)
assert_fr_equal(result, expected)
# specify columns
expected = DataFrame(comb, columns=names[::-1])
result = DataFrame(mrecs, columns=names[::-1])
assert_fr_equal(result, expected)
# specify index
expected = DataFrame(comb, columns=names, index=[1, 2])
result = DataFrame(mrecs, index=[1, 2])
assert_fr_equal(result, expected)
示例11: test_constructor_mrecarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def test_constructor_mrecarray(self):
# Ensure mrecarray produces frame identical to dict of masked arrays
# from GH3479
assert_fr_equal = functools.partial(tm.assert_frame_equal,
check_index_type=True,
check_column_type=True,
check_frame_type=True)
arrays = [
('float', np.array([1.5, 2.0])),
('int', np.array([1, 2])),
('str', np.array(['abc', 'def'])),
]
for name, arr in arrays[:]:
arrays.append(('masked1_' + name,
np.ma.masked_array(arr, mask=[False, True])))
arrays.append(('masked_all', np.ma.masked_all((2,))))
arrays.append(('masked_none',
np.ma.masked_array([1.0, 2.5], mask=False)))
# call assert_frame_equal for all selections of 3 arrays
for comb in itertools.combinations(arrays, 3):
names, data = zip(*comb)
mrecs = mrecords.fromarrays(data, names=names)
# fill the comb
comb = dict([(k, v.filled()) if hasattr(
v, 'filled') else (k, v) for k, v in comb])
expected = DataFrame(comb, columns=names)
result = DataFrame(mrecs)
assert_fr_equal(result, expected)
# specify columns
expected = DataFrame(comb, columns=names[::-1])
result = DataFrame(mrecs, columns=names[::-1])
assert_fr_equal(result, expected)
# specify index
expected = DataFrame(comb, columns=names, index=[1, 2])
result = DataFrame(mrecs, index=[1, 2])
assert_fr_equal(result, expected)
示例12: __init__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import masked_all [as 別名]
def __init__(self, nwalkers, ndim, lnpostfn, transd=False,
processes=None, pool=None, args=[]):
self.nwalkers = nwalkers
self.dim = ndim
self._kde = None
self._kde_size = self.nwalkers
self._updates = []
self._burnin_length = None
self._get_lnpost = lnpostfn
self._lnpost_args = args
self.iterations = 0
self.stored_iterations = 0
self.processes = processes
self._managing_pool = False
if pool is not None:
self.pool = pool
elif self.processes == 1:
self.pool = SerialPool()
else:
self._managing_pool = True
# create a multiprocessing pool
self.pool = Pool(self.processes)
if not hasattr(self.pool, 'map'):
raise AttributeError("Pool object must have a map() method.")
self._transd = transd
if self._transd:
self._chain = ma.masked_all((0, self.nwalkers, self.dim))
else:
self._chain = np.zeros((0, self.nwalkers, self.dim))
self._lnpost = np.empty((0, self.nwalkers))
self._lnprop = np.empty((0, self.nwalkers))
self._acceptance = np.zeros((0, self.nwalkers))
self._blobs = []
self._last_run_mcmc_result = None
self._burnin_spaces = None
self._failed_p = None