本文整理匯總了Python中numpy.ma.mask_or方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.mask_or方法的具體用法?Python ma.mask_or怎麽用?Python ma.mask_or使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.mask_or方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: set_UVC
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def set_UVC(self, U, V, C=None):
U = ma.masked_invalid(U, copy=False).ravel()
V = ma.masked_invalid(V, copy=False).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=False).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
示例2: pointbiserialr
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def pointbiserialr(x, y):
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data ..........
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
#
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
#
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
#
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
示例3: set_UVC
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def set_UVC(self, U, V, C=None):
# We need to ensure we have a copy, not a reference
# to an array that might change before draw().
U = ma.masked_invalid(U, copy=True).ravel()
V = ma.masked_invalid(V, copy=True).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=True).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
self.stale = True
示例4: __init__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def __init__(self,vals,vals_dmin,vals_dmax,mask=ma.nomask):
super(UncertContainer, self).__init__()
# If input data already masked arrays extract unmasked data
if ma.isMaskedArray(vals):
vals = vals.data
if ma.isMaskedArray(vals_dmin):
vals_dmin = vals_dmin.data
if ma.isMaskedArray(vals_dmax):
vals_dmax = vals_dmax.data
# Adjust negative values
ineg = np.where(vals_dmin <= 0.0)
vals_dmin[ineg] = TOL*vals[ineg]
# Calculate weight based on fractional uncertainty
diff = vals_dmax - vals_dmin
diff_m = ma.masked_where(vals_dmax == vals_dmin,diff)
self.vals = ma.masked_where(vals == 0.0,vals)
self.wt = (self.vals/diff_m)**2
self.uncert = diff_m/self.vals
self.wt.fill_value = np.inf
self.uncert.fill_vaule = np.inf
assert np.all(self.wt.mask == self.uncert.mask)
# Mask data if uncertainty is not finite or if any of the inputs were
# already masked
mm = ma.mask_or(self.wt.mask,mask)
self.vals.mask = mm
self.wt.mask = mm
self.uncert.mask = mm
self.dmin = ma.array(vals_dmin,mask=mm,fill_value=np.inf)
self.dmax = ma.array(vals_dmax,mask=mm,fill_value=np.inf)
self.mask = ma.getmaskarray(self.vals)
示例5: linregress
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def linregress(x, y=None):
"""
Linear regression calculation
Note that the non-masked version is used, and that this docstring is
replaced by the non-masked docstring + some info on missing data.
"""
if y is None:
x = ma.array(x)
if x.shape[0] == 2:
x, y = x
elif x.shape[1] == 2:
x, y = x.T
else:
msg = ("If only `x` is given as input, it has to be of shape "
"(2, N) or (N, 2), provided shape was %s" % str(x.shape))
raise ValueError(msg)
else:
x = ma.array(x)
y = ma.array(y)
x = x.flatten()
y = y.flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
if m is not nomask:
x = ma.array(x, mask=m)
y = ma.array(y, mask=m)
if np.any(~m):
slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m],
y.data[~m])
else:
# All data is masked
return None, None, None, None, None
else:
slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data)
return LinregressResult(slope, intercept, r, prob, sterrest)
示例6: linregress
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def linregress(*args):
if len(args) == 1: # more than 1D array?
args = ma.array(args[0], copy=True)
if len(args) == 2:
x = args[0]
y = args[1]
else:
x = args[:,0]
y = args[:,1]
else:
x = ma.array(args[0]).flatten()
y = ma.array(args[1]).flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
x = ma.array(x,mask=m)
y = ma.array(y,mask=m)
n = len(x)
(xmean, ymean) = (x.mean(), y.mean())
(xm, ym) = (x-xmean, y-ymean)
(Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
Sxy = ma.add.reduce(xm*ym)
r_den = ma.sqrt(Sxx*Syy)
if r_den == 0.0:
r = 0.0
else:
r = Sxy / r_den
if (r > 1.0):
r = 1.0 # from numerical error
# z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
df = n-2
t = r * ma.sqrt(df/(1.0-r*r))
prob = betai(0.5*df,0.5,df/(df+t*t))
slope = Sxy / Sxx
intercept = ymean - slope*xmean
sterrest = ma.sqrt(1.-r*r) * y.std()
return slope, intercept, r, prob, sterrest
示例7: pointbiserialr
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def pointbiserialr(x, y):
"""Calculates a point biserial correlation coefficient and its p-value.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
correlation : float
R value
pvalue : float
2-tailed p-value
Notes
-----
Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.
For more details on `pointbiserialr`, see `stats.pointbiserialr`.
"""
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = _betai(0.5*df, 0.5, df/(df+t*t))
return PointbiserialrResult(rpb, prob)
示例8: theilslopes
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def theilslopes(y, x=None, alpha=0.95):
r"""
Computes the Theil-Sen estimator for a set of points (x, y).
`theilslopes` implements a method for robust linear regression. It
computes the slope as the median of all slopes between paired values.
Parameters
----------
y : array_like
Dependent variable.
x : array_like or None, optional
Independent variable. If None, use ``arange(len(y))`` instead.
alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence.
Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
interpreted as "find the 90% confidence interval".
Returns
-------
medslope : float
Theil slope.
medintercept : float
Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
lo_slope : float
Lower bound of the confidence interval on `medslope`.
up_slope : float
Upper bound of the confidence interval on `medslope`.
Notes
-----
For more details on `theilslopes`, see `stats.theilslopes`.
"""
y = ma.asarray(y).flatten()
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != len(y):
raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
# Disregard any masked elements of x or y
y = y.compressed()
x = x.compressed().astype(float)
# We now have unmasked arrays so can use `stats.theilslopes`
return stats_theilslopes(y, x, alpha=alpha)
示例9: theilslopes
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import mask_or [as 別名]
def theilslopes(y, x=None, alpha=0.05):
"""
Computes the Theil slope as the median of all slopes between paired values.
Parameters
----------
y : array_like
Dependent variable.
x : {None, array_like}, optional
Independent variable. If None, use arange(len(y)) instead.
alpha : float
Confidence degree.
Returns
-------
medslope : float
Theil slope
medintercept : float
Intercept of the Theil line, as median(y)-medslope*median(x)
lo_slope : float
Lower bound of the confidence interval on medslope
up_slope : float
Upper bound of the confidence interval on medslope
"""
y = ma.asarray(y).flatten()
y[-1] = masked
n = len(y)
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != n:
raise ValueError("Incompatible lengths ! (%s<>%s)" % (n,len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
ny = y.count()
#
slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)])
slopes.sort()
medslope = ma.median(slopes)
medinter = ma.median(y) - medslope*ma.median(x)
#
if alpha > 0.5:
alpha = 1.-alpha
z = stats.distributions.norm.ppf(alpha/2.)
#
(xties, yties) = (count_tied_groups(x), count_tied_groups(y))
nt = ny*(ny-1)/2.
sigsq = (ny*(ny-1)*(2*ny+5)/18.)
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(xties))
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(yties))
sigma = np.sqrt(sigsq)
Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1)
Rl = max(np.round((nt + z*sigma)/2.), 0)
delta = slopes[[Rl,Ru]]
return medslope, medinter, delta[0], delta[1]