當前位置: 首頁>>代碼示例>>Python>>正文


Python ma.log方法代碼示例

本文整理匯總了Python中numpy.ma.log方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.log方法的具體用法?Python ma.log怎麽用?Python ma.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.ma的用法示例。


在下文中一共展示了ma.log方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform_non_affine

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def transform_non_affine(self, a):
        # Ignore invalid values due to nans being passed to the transform
        with np.errstate(divide="ignore", invalid="ignore"):
            out = np.log(a)
            out /= np.log(self.base)
            if self._clip:
                # SVG spec says that conforming viewers must support values up
                # to 3.4e38 (C float); however experiments suggest that
                # Inkscape (which uses cairo for rendering) runs into cairo's
                # 24-bit limit (which is apparently shared by Agg).
                # Ghostscript (used for pdf rendering appears to overflow even
                # earlier, with the max value around 2 ** 15 for the tests to
                # pass. On the other hand, in practice, we want to clip beyond
                #     np.log10(np.nextafter(0, 1)) ~ -323
                # so 1000 seems safe.
                    out[a <= 0] = -1000
        return out 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:scale.py

示例2: transform_non_affine

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def transform_non_affine(self, a):
            """
            This transform takes an Nx1 ``numpy`` array and returns a
            transformed copy.  Since the range of the Mercator scale
            is limited by the user-specified threshold, the input
            array must be masked to contain only valid values.
            ``matplotlib`` will handle masked arrays and remove the
            out-of-range data from the plot.  Importantly, the
            ``transform`` method *must* return an array that is the
            same shape as the input array, since these values need to
            remain synchronized with values in the other dimension.
            """
            masked = ma.masked_where((a < -self.thresh) | (a > self.thresh), a)
            if masked.mask.any():
                return ma.log(np.abs(ma.tan(masked) + 1.0 / ma.cos(masked)))
            else:
                return np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:19,代碼來源:custom_scale.py

示例3: transform_non_affine

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def transform_non_affine(self, a):
        # Ignore invalid values due to nans being passed to the transform
        with np.errstate(divide="ignore", invalid="ignore"):
            out = np.log(a)
            out /= np.log(self.base)
            if self._clip:
                # SVG spec says that conforming viewers must support values up
                # to 3.4e38 (C float); however experiments suggest that
                # Inkscape (which uses cairo for rendering) runs into cairo's
                # 24-bit limit (which is apparently shared by Agg).
                # Ghostscript (used for pdf rendering appears to overflow even
                # earlier, with the max value around 2 ** 15 for the tests to
                # pass. On the other hand, in practice, we want to clip beyond
                #     np.log10(np.nextafter(0, 1)) ~ -323
                # so 1000 seems safe.
                out[a <= 0] = -1000
        return out 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:19,代碼來源:scale.py

示例4: countTags

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def countTags(infile, outfile):
    '''count number of tags in bed-file.

    `outfile` will contain the number of tags in `infile`
    counted per chromosome.

    Arguments
    =========
    infile : string
        Input filename in :term:`bed` format
    outfile : string
        Output filename in :term:`tsv` format.

    '''

    statement = '''zcat %(infile)s
    | cgat bed2stats
    --per-contig
    --log=%(outfile)s.log
    >& %(outfile)s'''
    P.run() 
開發者ID:CGATOxford,項目名稱:CGATPipelines,代碼行數:23,代碼來源:PipelineWindows.py

示例5: geoMean

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def geoMean(array):
    '''
    Generate the geometric mean of a list or array,
    removing all zero-values but retaining total length
    '''
    if isinstance(array, pandas.core.frame.DataFrame):
        array = array.as_matrix()
    else:
        pass
    non_zero = ma.masked_values(array,
                                0)

    log_a = ma.log(non_zero)
    geom_mean = ma.exp(log_a.mean())

    return geom_mean 
開發者ID:CGATOxford,項目名稱:CGATPipelines,代碼行數:18,代碼來源:PipelineWindows.py

示例6: limit_range_for_scale

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Returns the range *vmin*, *vmax*, possibly limited to the
        domain supported by this scale.

        *minpos* should be the minimum positive value in the data.
         This is used by log scales to determine a minimum value.
        """
        return vmin, vmax 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:scale.py

示例7: transform_non_affine

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def transform_non_affine(self, a):
        a = self._handle_nonpos(a * 2.0)
        if isinstance(a, ma.MaskedArray):
            return ma.log(a) / np.log(2)
        return np.log2(a) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:scale.py

示例8: set_default_locators_and_formatters

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to specialized versions for
        log scaling.
        """
        axis.set_major_locator(LogLocator(self.base))
        axis.set_major_formatter(LogFormatterMathtext(self.base))
        axis.set_minor_locator(LogLocator(self.base, self.subs))
        axis.set_minor_formatter(NullFormatter()) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:scale.py

示例9: gmean

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def gmean(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    log_a = ma.log(a)
    return ma.exp(log_a.mean(axis=axis)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:mstats_basic.py

示例10: linregress

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def linregress(*args):
    if len(args) == 1:  # more than 1D array?
        args = ma.array(args[0], copy=True)
        if len(args) == 2:
            x = args[0]
            y = args[1]
        else:
            x = args[:,0]
            y = args[:,1]
    else:
        x = ma.array(args[0]).flatten()
        y = ma.array(args[1]).flatten()
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x,mask=m)
        y = ma.array(y,mask=m)
    n = len(x)
    (xmean, ymean) = (x.mean(), y.mean())
    (xm, ym) = (x-xmean, y-ymean)
    (Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
    Sxy = ma.add.reduce(xm*ym)
    r_den = ma.sqrt(Sxx*Syy)
    if r_den == 0.0:
        r = 0.0
    else:
        r = Sxy / r_den
        if (r > 1.0):
            r = 1.0  # from numerical error
    # z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
    df = n-2
    t = r * ma.sqrt(df/(1.0-r*r))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    slope = Sxy / Sxx
    intercept = ymean - slope*xmean
    sterrest = ma.sqrt(1.-r*r) * y.std()
    return slope, intercept, r, prob, sterrest 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:38,代碼來源:mstats_basic.py

示例11: _kolmog1

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import log [as 別名]
def _kolmog1(x,n):
    if x <= 0:
        return 0
    if x >= 1:
        return 1
    j = np.arange(np.floor(n*(1-x))+1)
    return 1 - x * np.sum(np.exp(np.log(misc.comb(n,j))
                                       + (n-j) * np.log(1-x-j/float(n))
                                       + (j-1) * np.log(x+j/float(n)))) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:mstats_basic.py


注:本文中的numpy.ma.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。