當前位置: 首頁>>代碼示例>>Python>>正文


Python ma.getmask方法代碼示例

本文整理匯總了Python中numpy.ma.getmask方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.getmask方法的具體用法?Python ma.getmask怎麽用?Python ma.getmask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.ma的用法示例。


在下文中一共展示了ma.getmask方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)
        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax

        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            result.fill(0)
        else:
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # in-place equivalent of above can be much faster
            resdat = self._transform(result.data)
            resdat -= self._lower
            resdat /= (self._upper - self._lower)

        if is_scalar:
            result = result[0]
        return result 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:27,代碼來源:colors.py

示例2: pointbiserialr

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def pointbiserialr(x, y):
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data ..........
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]
    #
    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()
    #
    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
    #
    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = betai(0.5*df, 0.5, df/(df+t*t))
    return rpb, prob 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:mstats_basic.py

示例3: f_value_wilks_lambda

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivariate data, per
    Maxwell & Delaney p.657.
    """
    ER = ma.array(ER, copy=False, ndmin=2)
    EF = ma.array(EF, copy=False, ndmin=2)
    if ma.getmask(ER).any() or ma.getmask(EF).any():
        raise NotImplementedError("Not implemented when the inputs "
                                  "have missing data")

    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
    q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
    q = ma.filled(q, 1)
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:18,代碼來源:mstats_basic.py

示例4: linregress

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def linregress(x, y=None):
    """
    Linear regression calculation

    Note that the non-masked version is used, and that this docstring is
    replaced by the non-masked docstring + some info on missing data.

    """
    if y is None:
        x = ma.array(x)
        if x.shape[0] == 2:
            x, y = x
        elif x.shape[1] == 2:
            x, y = x.T
        else:
            msg = ("If only `x` is given as input, it has to be of shape "
                   "(2, N) or (N, 2), provided shape was %s" % str(x.shape))
            raise ValueError(msg)
    else:
        x = ma.array(x)
        y = ma.array(y)

    x = x.flatten()
    y = y.flatten()

    m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
    if m is not nomask:
        x = ma.array(x, mask=m)
        y = ma.array(y, mask=m)
        if np.any(~m):
            slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m],
                                                                   y.data[~m])
        else:
            # All data is masked
            return None, None, None, None, None
    else:
        slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data)

    return LinregressResult(slope, intercept, r, prob, sterrest) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:mstats_basic.py

示例5: unscented_correct

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def unscented_correct(cross_sigma, moments_pred, obs_moments_pred, z):
    '''Correct predicted state estimates with an observation

    Parameters
    ----------
    cross_sigma : [n_dim_state, n_dim_obs] array
        cross-covariance between the state at time t given all observations
        from timesteps [0, t-1] and the observation at time t
    moments_pred : [n_dim_state] Moments
        mean and covariance of state at time t given observations from
        timesteps [0, t-1]
    obs_moments_pred : [n_dim_obs] Moments
        mean and covariance of observation at time t given observations from
        times [0, t-1]
    z : [n_dim_obs] array
        observation at time t

    Returns
    -------
    moments_filt : [n_dim_state] Moments
        mean and covariance of state at time t given observations from time
        steps [0, t]
    '''
    mu_pred, sigma_pred = moments_pred
    obs_mu_pred, obs_sigma_pred = obs_moments_pred

    n_dim_state = len(mu_pred)
    n_dim_obs = len(obs_mu_pred)

    if not np.any(ma.getmask(z)):
        # calculate Kalman gain
        K = cross_sigma.dot(linalg.pinv(obs_sigma_pred))

        # correct mu, sigma
        mu_filt = mu_pred + K.dot(z - obs_mu_pred)
        sigma_filt = sigma_pred - K.dot(cross_sigma.T)
    else:
        # no corrections to be made
        mu_filt = mu_pred
        sigma_filt = sigma_pred
    return Moments(mu_filt, sigma_filt) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:43,代碼來源:unscented.py

示例6: transform_affine

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def transform_affine(self, points):
        mtx = self.get_matrix()
        if isinstance(points, MaskedArray):
            tpoints = affine_transform(points.data, mtx)
            return ma.MaskedArray(tpoints, mask=ma.getmask(points))
        return affine_transform(points, mtx) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:8,代碼來源:transforms.py

示例7: _process_args

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def _process_args(self, *args, **kwargs):
        """
        Process args and kwargs.
        """
        if isinstance(args[0], QuadContourSet):
            C = args[0].Cntr
            if self.levels is None:
                self.levels = args[0].levels
            self.zmin = args[0].zmin
            self.zmax = args[0].zmax
        else:
            x, y, z = self._contour_args(args, kwargs)

            _mask = ma.getmask(z)
            if _mask is ma.nomask:
                _mask = None
            C = _cntr.Cntr(x, y, z.filled(), _mask)

            t = self.get_transform()

            # if the transform is not trans data, and some part of it
            # contains transData, transform the xs and ys to data coordinates
            if (t != self.ax.transData and
                    any(t.contains_branch_seperately(self.ax.transData))):
                trans_to_data = t - self.ax.transData
                pts = (np.vstack([x.flat, y.flat]).T)
                transformed_pts = trans_to_data.transform(pts)
                x = transformed_pts[..., 0]
                y = transformed_pts[..., 1]

            x0 = ma.minimum(x)
            x1 = ma.maximum(x)
            y0 = ma.minimum(y)
            y1 = ma.maximum(y)
            self.ax.update_datalim([(x0, y0), (x1, y1)])
            self.ax.autoscale_view(tight=True)

        self.Cntr = C 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:40,代碼來源:contour.py

示例8: linregress

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def linregress(*args):
    if len(args) == 1:  # more than 1D array?
        args = ma.array(args[0], copy=True)
        if len(args) == 2:
            x = args[0]
            y = args[1]
        else:
            x = args[:,0]
            y = args[:,1]
    else:
        x = ma.array(args[0]).flatten()
        y = ma.array(args[1]).flatten()
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x,mask=m)
        y = ma.array(y,mask=m)
    n = len(x)
    (xmean, ymean) = (x.mean(), y.mean())
    (xm, ym) = (x-xmean, y-ymean)
    (Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
    Sxy = ma.add.reduce(xm*ym)
    r_den = ma.sqrt(Sxx*Syy)
    if r_den == 0.0:
        r = 0.0
    else:
        r = Sxy / r_den
        if (r > 1.0):
            r = 1.0  # from numerical error
    # z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
    df = n-2
    t = r * ma.sqrt(df/(1.0-r*r))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    slope = Sxy / Sxx
    intercept = ymean - slope*xmean
    sterrest = ma.sqrt(1.-r*r) * y.std()
    return slope, intercept, r, prob, sterrest 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:38,代碼來源:mstats_basic.py

示例9: f_value_wilks_lambda

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    ER = ma.array(ER, copy=False, ndmin=2)
    EF = ma.array(EF, copy=False, ndmin=2)
    if ma.getmask(ER).any() or ma.getmask(EF).any():
        raise NotImplementedError("Not implemented when the inputs "
                                  "have missing data")
    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
    q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
    q = ma.filled(q, 1)
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:17,代碼來源:mstats_basic.py

示例10: getDataOnly

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def getDataOnly(array1d):
    '''
    Removes redundant no data slots in a 1D array
    Note that sometimes data is missing within the array, so in the majority of cases, the array just needs to be shortened, but in a small number of cases, the 'within array' no data needs to be replaced
    :param array1d:
    :return: Simple array of numbers
    '''

    if np.any(ma.getmask(array1d)):
        mymask = np.invert(ma.getmask(array1d))
        outarray = ma.getdata(array1d)[mymask]
    else:
        outarray = ma.getdata(array1d)

    return outarray 
開發者ID:MetOffice,項目名稱:forest,代碼行數:17,代碼來源:rdt.py

示例11: count_tied_groups

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def count_tied_groups(x, use_missing=False):
    """
    Counts the number of tied values.

    Parameters
    ----------
    x : sequence
        Sequence of data on which to counts the ties
    use_missing : bool, optional
        Whether to consider missing values as tied.

    Returns
    -------
    count_tied_groups : dict
        Returns a dictionary (nb of ties: nb of groups).

    Examples
    --------
    >>> from scipy.stats import mstats
    >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
    >>> mstats.count_tied_groups(z)
    {2: 1, 3: 2}

    In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

    >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
    >>> mstats.count_tied_groups(z)
    {2: 2, 3: 1}
    >>> z[[1,-1]] = np.ma.masked
    >>> mstats.count_tied_groups(z, use_missing=True)
    {2: 2, 3: 1}

    """
    nmasked = ma.getmask(x).sum()
    # We need the copy as find_repeats will overwrite the initial data
    data = ma.compressed(x).copy()
    (ties, counts) = find_repeats(data)
    nties = {}
    if len(ties):
        nties = dict(zip(np.unique(counts), itertools.repeat(1)))
        nties.update(dict(zip(*find_repeats(counts))))

    if nmasked and use_missing:
        try:
            nties[nmasked] += 1
        except KeyError:
            nties[nmasked] = 1

    return nties 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:51,代碼來源:mstats_basic.py

示例12: pointbiserialr

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def pointbiserialr(x, y):
    """Calculates a point biserial correlation coefficient and its p-value.

    Parameters
    ----------
    x : array_like of bools
        Input array.
    y : array_like
        Input array.

    Returns
    -------
    correlation : float
        R value
    pvalue : float
        2-tailed p-value

    Notes
    -----
    Missing values are considered pair-wise: if a value is missing in x,
    the corresponding value in y is masked.

    For more details on `pointbiserialr`, see `stats.pointbiserialr`.

    """
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]

    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()

    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()

    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = _betai(0.5*df, 0.5, df/(df+t*t))

    return PointbiserialrResult(rpb, prob) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:51,代碼來源:mstats_basic.py

示例13: theilslopes

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def theilslopes(y, x=None, alpha=0.95):
    r"""
    Computes the Theil-Sen estimator for a set of points (x, y).

    `theilslopes` implements a method for robust linear regression.  It
    computes the slope as the median of all slopes between paired values.

    Parameters
    ----------
    y : array_like
        Dependent variable.
    x : array_like or None, optional
        Independent variable. If None, use ``arange(len(y))`` instead.
    alpha : float, optional
        Confidence degree between 0 and 1. Default is 95% confidence.
        Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
        interpreted as "find the 90% confidence interval".

    Returns
    -------
    medslope : float
        Theil slope.
    medintercept : float
        Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
    lo_slope : float
        Lower bound of the confidence interval on `medslope`.
    up_slope : float
        Upper bound of the confidence interval on `medslope`.

    Notes
    -----
    For more details on `theilslopes`, see `stats.theilslopes`.

    """
    y = ma.asarray(y).flatten()
    if x is None:
        x = ma.arange(len(y), dtype=float)
    else:
        x = ma.asarray(x).flatten()
        if len(x) != len(y):
            raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))

    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    y._mask = x._mask = m
    # Disregard any masked elements of x or y
    y = y.compressed()
    x = x.compressed().astype(float)
    # We now have unmasked arrays so can use `stats.theilslopes`
    return stats_theilslopes(y, x, alpha=alpha) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:51,代碼來源:mstats_basic.py

示例14: _unscented_correct

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def _unscented_correct(cross_sigma, moments_pred, obs_moments_pred, z):
    '''Correct predicted state estimates with an observation

    Parameters
    ----------
    cross_sigma : [n_dim_state, n_dim_obs] array
        cross-covariance between the state at time t given all observations
        from timesteps [0, t-1] and the observation at time t
    moments_pred : [n_dim_state] Moments
        mean and covariance of state at time t given observations from
        timesteps [0, t-1]
    obs_moments_pred : [n_dim_obs] Moments
        mean and covariance of observation at time t given observations from
        times [0, t-1]
    z : [n_dim_obs] array
        observation at time t

    Returns
    -------
    moments_filt : [n_dim_state] Moments
        mean and covariance of state at time t given observations from time
        steps [0, t]
    '''
    mu_pred, sigma2_pred = moments_pred
    obs_mu_pred, obs_sigma2_pred = obs_moments_pred

    n_dim_state = len(mu_pred)
    n_dim_obs = len(obs_mu_pred)

    if not np.any(ma.getmask(z)):
        ##############################################
        # Same as this, but more stable (supposedly) #
        ##############################################
        # K = cross_sigma.dot(
        #     linalg.pinv(
        #         obs_sigma2_pred.T.dot(obs_sigma2_pred)
        #     )
        # )
        ##############################################

        # equivalent to this MATLAB code
        # K = (cross_sigma / obs_sigma2_pred.T) / obs_sigma2_pred
        K = linalg.lstsq(obs_sigma2_pred, cross_sigma.T)[0]
        K = linalg.lstsq(obs_sigma2_pred.T, K)[0]
        K = K.T

        # correct mu, sigma
        mu_filt = mu_pred + K.dot(z - obs_mu_pred)
        U = K.dot(obs_sigma2_pred)
        sigma2_filt = cholupdate(sigma2_pred, U.T, -1.0)
    else:
        # no corrections to be made
        mu_filt = mu_pred
        sigma2_filt = sigma2_pred
    return Moments(mu_filt, sigma2_filt) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:57,代碼來源:unscented.py

示例15: theilslopes

# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import getmask [as 別名]
def theilslopes(y, x=None, alpha=0.05):
    """
    Computes the Theil slope as the median of all slopes between paired values.

    Parameters
    ----------
    y : array_like
        Dependent variable.
    x : {None, array_like}, optional
        Independent variable. If None, use arange(len(y)) instead.
    alpha : float
        Confidence degree.

    Returns
    -------
    medslope : float
        Theil slope
    medintercept : float
        Intercept of the Theil line, as median(y)-medslope*median(x)
    lo_slope : float
        Lower bound of the confidence interval on medslope
    up_slope : float
        Upper bound of the confidence interval on medslope

    """
    y = ma.asarray(y).flatten()
    y[-1] = masked
    n = len(y)
    if x is None:
        x = ma.arange(len(y), dtype=float)
    else:
        x = ma.asarray(x).flatten()
        if len(x) != n:
            raise ValueError("Incompatible lengths ! (%s<>%s)" % (n,len(x)))
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    y._mask = x._mask = m
    ny = y.count()
    #
    slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)])
    slopes.sort()
    medslope = ma.median(slopes)
    medinter = ma.median(y) - medslope*ma.median(x)
    #
    if alpha > 0.5:
        alpha = 1.-alpha
    z = stats.distributions.norm.ppf(alpha/2.)
    #
    (xties, yties) = (count_tied_groups(x), count_tied_groups(y))
    nt = ny*(ny-1)/2.
    sigsq = (ny*(ny-1)*(2*ny+5)/18.)
    sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(xties))
    sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(yties))
    sigma = np.sqrt(sigsq)

    Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1)
    Rl = max(np.round((nt + z*sigma)/2.), 0)
    delta = slopes[[Rl,Ru]]
    return medslope, medinter, delta[0], delta[1] 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:60,代碼來源:mstats_basic.py


注:本文中的numpy.ma.getmask方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。