本文整理匯總了Python中numpy.ma.asarray方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.asarray方法的具體用法?Python ma.asarray怎麽用?Python ma.asarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.asarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_real_label_width
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def get_real_label_width(self, lev, fmt, fsize):
"""
This computes actual onscreen label width.
This uses some black magic to determine onscreen extent of non-drawn
label. This magic may not be very robust.
This method is not being used, and may be modified or removed.
"""
# Find middle of axes
xx = np.mean(np.asarray(self.ax.axis()).reshape(2, 2), axis=1)
# Temporarily create text object
t = text.Text(xx[0], xx[1])
self.set_label_props(t, self.get_text(lev, fmt), 'k')
# Some black magic to get onscreen extent
# NOTE: This will only work for already drawn figures, as the canvas
# does not have a renderer otherwise. This is the reason this function
# can't be integrated into the rest of the code.
bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer)
# difference in pixel extent of image
lw = np.diff(bbox.corners()[0::2, 0])[0]
return lw
示例2: __call__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def __call__(self, x, clip=None):
if clip is None:
clip = self.clip
x = ma.asarray(x)
mask = ma.getmaskarray(x)
xx = x.filled(self.vmax + 1)
if clip:
np.clip(xx, self.vmin, self.vmax)
iret = np.zeros(x.shape, dtype=np.int16)
for i, b in enumerate(self.boundaries):
iret[xx >= b] = i
if self._interp:
scalefac = float(self.Ncmap - 1) / (self.N - 2)
iret = (iret * scalefac).astype(np.int16)
iret[xx < self.vmin] = -1
iret[xx >= self.vmax] = self.Ncmap
ret = ma.array(iret, mask=mask)
if ret.shape == () and not mask:
ret = int(ret) # assume python scalar
return ret
示例3: _contour_args
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def _contour_args(self, args, kwargs):
if self.filled:
fn = 'contourf'
else:
fn = 'contour'
Nargs = len(args)
if Nargs <= 2:
z = ma.asarray(args[0], dtype=np.float64)
x, y = self._initialize_x_y(z)
args = args[1:]
elif Nargs <= 4:
x, y, z = self._check_xyz(args[:3], kwargs)
args = args[3:]
else:
raise TypeError("Too many arguments to %s; see help(%s)" %
(fn, fn))
z = ma.masked_invalid(z, copy=False)
self.zmax = float(z.max())
self.zmin = float(z.min())
if self.logscale and self.zmin <= 0:
z = ma.masked_where(z <= 0, z)
warnings.warn('Log scale: values of z <= 0 have been masked')
self.zmin = float(z.min())
self._contour_level_args(z, args)
return (x, y, z)
示例4: argstoarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def argstoarray(*args):
"""
Constructs a 2D array from a group of sequences.
Sequences are filled with missing values to match the length of the longest
sequence.
Parameters
----------
args : sequences
Group of sequences.
Returns
-------
argstoarray : MaskedArray
A ( `m` x `n` ) masked array, where `m` is the number of arguments and
`n` the length of the longest argument.
Notes
-----
`numpy.ma.row_stack` has identical behavior, but is called with a sequence
of sequences.
"""
if len(args) == 1 and not isinstance(args[0], ndarray):
output = ma.asarray(args[0])
if output.ndim != 2:
raise ValueError("The input should be 2D")
else:
n = len(args)
m = max([len(k) for k in args])
output = ma.array(np.empty((n,m), dtype=float), mask=True)
for (k,v) in enumerate(args):
output[k,:len(v)] = v
output[np.logical_not(np.isfinite(output._data))] = masked
return output
示例5: find_repeats
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def find_repeats(arr):
"""Find repeats in arr and return a tuple (repeats, repeat_count).
The input is cast to float64. Masked values are discarded.
Parameters
----------
arr : sequence
Input array. The array is flattened if it is not 1D.
Returns
-------
repeats : ndarray
Array of repeated values.
counts : ndarray
Array of counts.
"""
# Make sure we get a copy. ma.compressed promises a "new array", but can
# actually return a reference.
compr = np.asarray(ma.compressed(arr), dtype=np.float64)
try:
need_copy = np.may_share_memory(compr, arr)
except AttributeError:
# numpy < 1.8.2 bug: np.may_share_memory([], []) raises,
# while in numpy 1.8.2 and above it just (correctly) returns False.
need_copy = False
if need_copy:
compr = compr.copy()
return _find_repeats(compr)
示例6: smooth
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def smooth(self, Z):
'''Run Unscented Kalman Smoother
Parameters
----------
Z : [n_timesteps, n_dim_state] array
Z[t] = observation at time t. If Z is a masked array and any of
Z[t]'s elements are masked, the observation is assumed missing and
ignored.
Returns
-------
smoothed_state_means : [n_timesteps, n_dim_state] array
filtered_state_means[t] = mean of state distribution at time t given
observations from times [0, n_timesteps-1]
smoothed_state_covariances : [n_timesteps, n_dim_state, n_dim_state] array
filtered_state_covariances[t] = covariance of state distribution at
time t given observations from times [0, n_timesteps-1]
'''
Z = ma.asarray(Z)
(transition_functions, observation_functions,
transition_covariance, observation_covariance,
initial_state_mean, initial_state_covariance) = (
self._initialize_parameters()
)
(filtered_state_means, filtered_state_covariances) = self.filter(Z)
(smoothed_state_means, smoothed_state_covariances) = (
additive_unscented_smoother(
filtered_state_means, filtered_state_covariances,
transition_functions, transition_covariance
)
)
return (smoothed_state_means, smoothed_state_covariances)
示例7: _contour_level_args
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def _contour_level_args(self, z, args):
"""
Determine the contour levels and store in self.levels.
"""
if self.filled:
fn = 'contourf'
else:
fn = 'contour'
self._auto = False
if self.levels is None:
if len(args) == 0:
lev = self._autolev(z, 7)
else:
level_arg = args[0]
try:
if type(level_arg) == int:
lev = self._autolev(z, level_arg)
else:
lev = np.asarray(level_arg).astype(np.float64)
except:
raise TypeError(
"Last %s arg must give levels; see help(%s)" %
(fn, fn))
self.levels = lev
if self.filled and len(self.levels) < 2:
raise ValueError("Filled contours require at least 2 levels.")
示例8: _process_levels
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def _process_levels(self):
"""
Assign values to :attr:`layers` based on :attr:`levels`,
adding extended layers as needed if contours are filled.
For line contours, layers simply coincide with levels;
a line is a thin layer. No extended levels are needed
with line contours.
"""
# The following attributes are no longer needed, and
# should be deprecated and removed to reduce confusion.
self.vmin = np.amin(self.levels)
self.vmax = np.amax(self.levels)
# Make a private _levels to include extended regions; we
# want to leave the original levels attribute unchanged.
# (Colorbar needs this even for line contours.)
self._levels = list(self.levels)
if self.extend in ('both', 'min'):
self._levels.insert(0, min(self.levels[0], self.zmin) - 1)
if self.extend in ('both', 'max'):
self._levels.append(max(self.levels[-1], self.zmax) + 1)
self._levels = np.asarray(self._levels)
if not self.filled:
self.layers = self.levels
return
# layer values are mid-way between levels
self.layers = 0.5 * (self._levels[:-1] + self._levels[1:])
# ...except that extended layers must be outside the
# normed range:
if self.extend in ('both', 'min'):
self.layers[0] = -np.inf
if self.extend in ('both', 'max'):
self.layers[-1] = np.inf
示例9: process_value
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def process_value(value):
"""
Homogenize the input *value* for easy and efficient normalization.
*value* can be a scalar or sequence.
Returns *result*, *is_scalar*, where *result* is a
masked array matching *value*. Float dtypes are preserved;
integer types with two bytes or smaller are converted to
np.float32, and larger types are converted to np.float.
Preserving float32 when possible, and using in-place operations,
can greatly improve speed for large arrays.
Experimental; we may want to add an option to force the
use of float32.
"""
if cbook.iterable(value):
is_scalar = False
result = ma.asarray(value)
if result.dtype.kind == 'f':
if isinstance(value, np.ndarray):
result = result.copy()
elif result.dtype.itemsize > 2:
result = result.astype(np.float)
else:
result = result.astype(np.float32)
else:
is_scalar = True
result = ma.array([value]).astype(np.float)
return result, is_scalar
示例10: inverse
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def inverse(self, value):
if not self.scaled():
raise ValueError("Not invertible until scaled")
vmin = float(self.vmin)
vmax = float(self.vmax)
if cbook.iterable(value):
val = ma.asarray(value)
return vmin + val * (vmax - vmin)
else:
return vmin + value * (vmax - vmin)
示例11: __init__
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def __init__(self, boundaries, ncolors, clip=False):
'''
*boundaries*
a monotonically increasing sequence
*ncolors*
number of colors in the colormap to be used
If::
b[i] <= v < b[i+1]
then v is mapped to color j;
as i varies from 0 to len(boundaries)-2,
j goes from 0 to ncolors-1.
Out-of-range values are mapped to -1 if low and ncolors
if high; these are converted to valid indices by
:meth:`Colormap.__call__` .
'''
self.clip = clip
self.vmin = boundaries[0]
self.vmax = boundaries[-1]
self.boundaries = np.asarray(boundaries)
self.N = len(self.boundaries)
self.Ncmap = ncolors
if self.N - 1 == self.Ncmap:
self._interp = False
else:
self._interp = True
示例12: argstoarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def argstoarray(*args):
"""
Constructs a 2D array from a group of sequences.
Sequences are filled with missing values to match the length of the longest
sequence.
Parameters
----------
args : sequences
Group of sequences.
Returns
-------
argstoarray : MaskedArray
A ( `m` x `n` ) masked array, where `m` is the number of arguments and
`n` the length of the longest argument.
Notes
-----
numpy.ma.row_stack has identical behavior, but is called with a sequence of
sequences.
"""
if len(args) == 1 and not isinstance(args[0], ndarray):
output = ma.asarray(args[0])
if output.ndim != 2:
raise ValueError("The input should be 2D")
else:
n = len(args)
m = max([len(k) for k in args])
output = ma.array(np.empty((n,m), dtype=float), mask=True)
for (k,v) in enumerate(args):
output[k,:len(v)] = v
output[np.logical_not(np.isfinite(output._data))] = masked
return output
#####--------------------------------------------------------------------------
#---- --- Ranking ---
#####--------------------------------------------------------------------------
示例13: ks_twosamp_old
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def ks_twosamp_old(data1, data2):
""" Computes the Kolmogorov-Smirnov statistic on 2 samples.
Returns
-------
KS D-value, p-value
"""
(data1, data2) = [ma.asarray(d).compressed() for d in (data1,data2)]
return stats.ks_2samp(data1,data2)
#####--------------------------------------------------------------------------
#---- --- Trimming ---
#####--------------------------------------------------------------------------
示例14: trima
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def trima(a, limits=None, inclusive=(True,True)):
"""Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple}, optional
Tuple of (lower limit, upper limit) in absolute values.
Values of the input array lower (greater) than the lower (upper) limit
will be masked. A limit is None indicates an open interval.
inclusive : {(True,True) tuple}, optional
Tuple of (lower flag, upper flag), indicating whether values exactly
equal to the lower (upper) limit are allowed.
"""
a = ma.asarray(a)
a.unshare_mask()
if limits is None:
return a
(lower_lim, upper_lim) = limits
(lower_in, upper_in) = inclusive
condition = False
if lower_lim is not None:
if lower_in:
condition |= (a < lower_lim)
else:
condition |= (a <= lower_lim)
if upper_lim is not None:
if upper_in:
condition |= (a > upper_lim)
else:
condition |= (a >= upper_lim)
a[condition.filled(True)] = masked
return a
示例15: tsem
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import asarray [as 別名]
def tsem(a, limits=None, inclusive=(True,True)):
a = ma.asarray(a).ravel()
if limits is None:
n = float(a.count())
return a.std()/ma.sqrt(n)
am = trima(a.ravel(), limits, inclusive)
sd = np.sqrt(am.var())
return sd / am.count()