本文整理匯總了Python中numpy.ma.MaskedArray方法的典型用法代碼示例。如果您正苦於以下問題:Python ma.MaskedArray方法的具體用法?Python ma.MaskedArray怎麽用?Python ma.MaskedArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.ma
的用法示例。
在下文中一共展示了ma.MaskedArray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_size
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def get_size(item):
"""Return size of an item of arbitrary type"""
if isinstance(item, (list, set, tuple, dict)):
return len(item)
elif isinstance(item, (ndarray, MaskedArray)):
return item.shape
elif isinstance(item, Image):
return item.size
if isinstance(item, (DataFrame, Index, Series)):
try:
return item.shape
except RecursionError:
# This is necessary to avoid an error when trying to
# get the shape of these objects.
# Fixes spyder-ide/spyder-kernels#217
return (-1, -1)
else:
return 1
示例2: get_human_readable_type
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def get_human_readable_type(item):
"""Return human-readable type string of an item"""
if isinstance(item, (ndarray, MaskedArray)):
return u'Array of ' + item.dtype.name
elif isinstance(item, Image):
return "Image"
else:
text = get_type_string(item)
if text is None:
text = to_text_string('Unknown')
else:
return text[text.find('.')+1:]
#==============================================================================
# Globals filter: filter namespace dictionaries (to be edited in
# CollectionsEditor)
#==============================================================================
示例3: transform_non_affine
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def transform_non_affine(self, points):
if self._x.is_affine and self._y.is_affine:
return points
x = self._x
y = self._y
if x == y and x.input_dims == 2:
return x.transform_non_affine(points)
if x.input_dims == 2:
x_points = x.transform_non_affine(points)[:, 0:1]
else:
x_points = x.transform_non_affine(points[:, 0])
x_points = x_points.reshape((len(x_points), 1))
if y.input_dims == 2:
y_points = y.transform_non_affine(points)[:, 1:]
else:
y_points = y.transform_non_affine(points[:, 1])
y_points = y_points.reshape((len(y_points), 1))
if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray):
return ma.concatenate((x_points, y_points), 1)
else:
return np.concatenate((x_points, y_points), 1)
示例4: view_field
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def view_field(self, name, type=None):
"""construct a view of one data field
Parameters
----------
name : string
the name of the field
type : type, optional
the type of the returned array
Returns
-------
view : MaskedArray
a view of the specified field
"""
view = self.data[name]
if type is not None:
return view.view(type=type)
else:
return view
示例5: hdmedian
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def hdmedian(data, axis=-1, var=False):
"""
Returns the Harrell-Davis estimate of the median along the given axis.
Parameters
----------
data : ndarray
Data array.
axis : int, optional
Axis along which to compute the quantiles. If None, use a flattened
array.
var : bool, optional
Whether to return the variance of the estimate.
Returns
-------
hdmedian : MaskedArray
The median values. If ``var=True``, the variance is returned inside
the masked array. E.g. for a 1-D array the shape change from (1,) to
(2,).
"""
result = hdquantiles(data,[0.5], axis=axis, var=var)
return result.squeeze()
示例6: test_1D
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def test_1D(self):
a = (1,2,3,4)
actual = mstats.gmean(a)
desired = np.power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired, decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
assert_(not isinstance(desired1, ma.MaskedArray))
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual = mstats.gmean(a)
desired = np.power(1*2*3,1./3.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
示例7: createFromMaskedArray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def createFromMaskedArray(cls, masked_arr):
""" Creates an ArrayWithMak
:param masked_arr: a numpy MaskedArray or numpy array
:return: ArrayWithMask
"""
if isinstance(masked_arr, ArrayWithMask):
return masked_arr
check_class(masked_arr, (np.ndarray, ma.MaskedArray))
# A MaskedConstant (i.e. masked) is a special case of MaskedArray. It does not seem to have
# a fill_value so we use None to use the default.
# https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.masked
fill_value = getattr(masked_arr, 'fill_value', None)
return cls(masked_arr.data, masked_arr.mask, fill_value)
示例8: fillValuesToNan
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def fillValuesToNan(masked_array):
""" Replaces the fill_values of the masked array by NaNs
If the array is None or it does not contain floating point values, it cannot contain NaNs.
In that case the original array is returned.
"""
if masked_array is not None and masked_array.dtype.kind == 'f':
check_class(masked_array, ma.masked_array)
logger.debug("Replacing fill_values by NaNs")
masked_array[:] = ma.filled(masked_array, np.nan)
masked_array.set_fill_value(np.nan)
else:
return masked_array
#TODO: does recordMask help here?
# https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.recordmask
示例9: _fix_output
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def _fix_output(output, usemask=True, asrecarray=False):
"""
Private function: return a recarray, a ndarray, a MaskedArray
or a MaskedRecords depending on the input parameters
"""
if not isinstance(output, MaskedArray):
usemask = False
if usemask:
if asrecarray:
output = output.view(MaskedRecords)
else:
output = ma.filled(output)
if asrecarray:
output = output.view(recarray)
return output
示例10: test_join_subdtype
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def test_join_subdtype(self):
# tests the bug in https://stackoverflow.com/q/44769632/102441
from numpy.lib import recfunctions as rfn
foo = np.array([(1,)],
dtype=[('key', int)])
bar = np.array([(1, np.array([1,2,3]))],
dtype=[('key', int), ('value', 'uint16', 3)])
res = join_by('key', foo, bar)
assert_equal(res, bar.view(ma.MaskedArray))
示例11: test_view_simple_dtype
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def test_view_simple_dtype(self):
(mrec, a, b, arr) = self.data
ntype = (float, 2)
test = mrec.view(ntype)
assert_(isinstance(test, ma.MaskedArray))
assert_equal(test, np.array(list(zip(a, b)), dtype=float))
assert_(test[3, 1] is ma.masked)
示例12: argstoarray
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def argstoarray(*args):
"""
Constructs a 2D array from a group of sequences.
Sequences are filled with missing values to match the length of the longest
sequence.
Parameters
----------
args : sequences
Group of sequences.
Returns
-------
argstoarray : MaskedArray
A ( `m` x `n` ) masked array, where `m` is the number of arguments and
`n` the length of the longest argument.
Notes
-----
`numpy.ma.row_stack` has identical behavior, but is called with a sequence
of sequences.
"""
if len(args) == 1 and not isinstance(args[0], ndarray):
output = ma.asarray(args[0])
if output.ndim != 2:
raise ValueError("The input should be 2D")
else:
n = len(args)
m = max([len(k) for k in args])
output = ma.array(np.empty((n,m), dtype=float), mask=True)
for (k,v) in enumerate(args):
output[k,:len(v)] = v
output[np.logical_not(np.isfinite(output._data))] = masked
return output
示例13: idealfourths
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def idealfourths(data, axis=None):
"""
Returns an estimate of the lower and upper quartiles.
Uses the ideal fourths algorithm.
Parameters
----------
data : array_like
Input array.
axis : int, optional
Axis along which the quartiles are estimated. If None, the arrays are
flattened.
Returns
-------
idealfourths : {list of floats, masked array}
Returns the two internal values that divide `data` into four parts
using the ideal fourths algorithm either along the flattened array
(if `axis` is None) or along `axis` of `data`.
"""
def _idf(data):
x = data.compressed()
n = len(x)
if n < 3:
return [np.nan,np.nan]
(j,h) = divmod(n/4. + 5/12.,1)
j = int(j)
qlo = (1-h)*x[j-1] + h*x[j]
k = n - j
qup = (1-h)*x[k] + h*x[k-1]
return [qlo, qup]
data = ma.sort(data, axis=axis).view(MaskedArray)
if (axis is None):
return _idf(data)
else:
return ma.apply_along_axis(_idf, axis, data)
示例14: test_view_simple_dtype
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def test_view_simple_dtype(self):
(mrec, a, b, arr) = self.data
ntype = (np.float, 2)
test = mrec.view(ntype)
self.assertTrue(isinstance(test, ma.MaskedArray))
assert_equal(test, np.array(list(zip(a, b)), dtype=np.float))
self.assertTrue(test[3, 1] is ma.masked)
示例15: is_known_type
# 需要導入模塊: from numpy import ma [as 別名]
# 或者: from numpy.ma import MaskedArray [as 別名]
def is_known_type(item):
"""Return True if object has a known type"""
# Unfortunately, the masked array case is specific
return isinstance(item, MaskedArray) or get_type_string(item) is not None