當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.longdouble方法代碼示例

本文整理匯總了Python中numpy.longdouble方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.longdouble方法的具體用法?Python numpy.longdouble怎麽用?Python numpy.longdouble使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.longdouble方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: best_float

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def best_float():
    """ Floating point type with best precision

    This is nearly always np.longdouble, except on Windows, where np.longdouble
    is Intel80 storage, but with float64 precision for calculations.  In that
    case we return float64 on the basis it's the fastest and smallest at the
    highest precision.

    Returns
    -------
    best_type : numpy type
        floating point type with highest precision
    """
    if (type_info(np.longdouble)['nmant'] > type_info(np.float64)['nmant'] and
        machine() != 'sparc64'): # sparc has crazy-slow float128
        return np.longdouble
    return np.float64 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:19,代碼來源:casting.py

示例2: test_as_int

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_as_int():
    # Integer representation of number
    assert_equal(as_int(2.0), 2)
    assert_equal(as_int(-2.0), -2)
    assert_raises(FloatingError, as_int, 2.1)
    assert_raises(FloatingError, as_int, -2.1)
    assert_equal(as_int(2.1, False), 2)
    assert_equal(as_int(-2.1, False), -2)
    v = np.longdouble(2**64)
    assert_equal(as_int(v), 2**64)
    # Have all long doubles got 63+1 binary bits of precision?  Windows 32-bit
    # longdouble appears to have 52 bit precision, but we avoid that by checking
    # for known precisions that are less than that required
    try:
        nmant = type_info(np.longdouble)['nmant']
    except FloatingError:
        nmant = 63 # Unknown precision, let's hope it's at least 63
    v = np.longdouble(2) ** (nmant + 1) - 1
    assert_equal(as_int(v), 2**(nmant + 1) -1)
    # Check for predictable overflow
    nexp64 = floor_log2(type_info(np.float64)['max'])
    val = np.longdouble(2**nexp64) * 2 # outside float64 range
    assert_raises(OverflowError, as_int, val)
    assert_raises(OverflowError, as_int, -val) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:26,代碼來源:test_floating.py

示例3: test_float_types

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_float_types(tp):
    """ Check formatting.

        This is only for the str function, and only for simple types.
        The precision of np.float32 and np.longdouble aren't the same as the
        python float precision.

    """
    for x in [0, 1, -1, 1e20]:
        assert_equal(str(tp(x)), str(float(x)),
                     err_msg='Failed str formatting for type %s' % tp)

    if tp(1e16).itemsize > 4:
        assert_equal(str(tp(1e16)), str(float('1e16')),
                     err_msg='Failed str formatting for type %s' % tp)
    else:
        ref = '1e+16'
        assert_equal(str(tp(1e16)), ref,
                     err_msg='Failed str formatting for type %s' % tp) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_print.py

示例4: test_str

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_str(self):
        svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan]
        styps = [np.float16, np.float32, np.float64, np.longdouble]
        wanted = [
             ['0.0',  '0.0',  '0.0',  '0.0' ],
             ['-0.0', '-0.0', '-0.0', '-0.0'],
             ['1.0',  '1.0',  '1.0',  '1.0' ],
             ['-1.0', '-1.0', '-1.0', '-1.0'],
             ['inf',  'inf',  'inf',  'inf' ],
             ['-inf', '-inf', '-inf', '-inf'],
             ['nan',  'nan',  'nan',  'nan']]

        for wants, val in zip(wanted, svals):
            for want, styp in zip(wants, styps):
                msg = 'for str({}({}))'.format(np.dtype(styp).name, repr(val))
                assert_equal(str(styp(val)), want, err_msg=msg) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_scalarprint.py

示例5: test_floating_overflow

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_floating_overflow(self):
        """ Strings containing an unrepresentable float overflow """
        fhalf = np.half('1e10000')
        assert_equal(fhalf, np.inf)
        fsingle = np.single('1e10000')
        assert_equal(fsingle, np.inf)
        fdouble = np.double('1e10000')
        assert_equal(fdouble, np.inf)
        flongdouble = assert_warns(RuntimeWarning, np.longdouble, '1e10000')
        assert_equal(flongdouble, np.inf)

        fhalf = np.half('-1e10000')
        assert_equal(fhalf, -np.inf)
        fsingle = np.single('-1e10000')
        assert_equal(fsingle, -np.inf)
        fdouble = np.double('-1e10000')
        assert_equal(fdouble, -np.inf)
        flongdouble = assert_warns(RuntimeWarning, np.longdouble, '-1e10000')
        assert_equal(flongdouble, -np.inf) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_scalar_ctors.py

示例6: test_known_types

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_known_types():
    # Test we are correctly compiling parameters for known types
    for ftype, ma_like in ((np.float16, _float_ma[16]),
                           (np.float32, _float_ma[32]),
                           (np.float64, _float_ma[64])):
        assert_ma_equal(_discovered_machar(ftype), ma_like)
    # Suppress warning for broken discovery of double double on PPC
    with np.errstate(all='ignore'):
        ld_ma = _discovered_machar(np.longdouble)
    bytes = np.dtype(np.longdouble).itemsize
    if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
        # 80-bit extended precision
        assert_ma_equal(ld_ma, _float_ma[80])
    elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
        # IEE 754 128-bit
        assert_ma_equal(ld_ma, _float_ma[128]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_getlimits.py

示例7: test_sum

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:test_ufunc.py

示例8: int_to_float

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def int_to_float(val, flt_type):
    """ Convert integer `val` to floating point type `flt_type`

    Why is this so complicated?

    At least in numpy <= 1.6.1, numpy longdoubles do not correctly convert to
    ints, and ints do not correctly convert to longdoubles.  Specifically, in
    both cases, the values seem to go through float64 conversion on the way, so
    to convert better, we need to split into float64s and sum up the result.

    Parameters
    ----------
    val : int
        Integer value
    flt_type : object
        numpy floating point type

    Returns
    -------
    f : numpy scalar
        of type `flt_type`
    """
    if not flt_type is np.longdouble:
        return flt_type(val)
    faval = np.longdouble(0)
    while val != 0:
        f64 = np.float64(val)
        faval += f64
        val -= int(f64)
    return faval 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:32,代碼來源:casting.py

示例9: have_binary128

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def have_binary128():
    """ True if we have a binary128 IEEE longdouble
    """
    ti = type_info(np.longdouble)
    return (ti['nmant'], ti['maxexp']) == (112, 16384) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:7,代碼來源:casting.py

示例10: test_best_float

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_best_float():
    # Finds the most capable floating point type
    # The only time this isn't np.longdouble is when np.longdouble has float64
    # precision.
    best = best_float()
    end_of_ints = np.float64(2**53)
    # float64 has continuous integers up to 2**53
    assert_equal(end_of_ints, end_of_ints + 1)
    # longdouble may have more, but not on 32 bit windows, at least
    end_of_ints = np.longdouble(2**53)
    if (end_of_ints == (end_of_ints + 1) or # off continuous integers
        machine() == 'sparc64'): # crippling slow longdouble on sparc
        assert_equal(best, np.float64)
    else:
        assert_equal(best, np.longdouble) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:17,代碼來源:test_casting.py

示例11: test_nmant

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_nmant():
    for t in IEEE_floats:
        assert_equal(type_info(t)['nmant'], np.finfo(t).nmant)
    if (LD_INFO['nmant'], LD_INFO['nexp']) == (63, 15):
        assert_equal(type_info(np.longdouble)['nmant'], 63) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:7,代碼來源:test_floating.py

示例12: test_usable_binary128

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_usable_binary128():
    # Check for usable binary128
    yes = have_binary128()
    exp_test = np.longdouble(2) ** 16383
    assert_equal(yes,
                 exp_test.dtype.itemsize == 16 and
                 np.isfinite(exp_test) and
                 _check_nmant(np.longdouble, 112)) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:10,代碼來源:test_floating.py

示例13: test_best_write_scale_ftype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_best_write_scale_ftype():
    # Test best write scaling type
    # Types return better of (default, array type) unless scale overflows.
    # Return float type cannot be less capable than the input array type
    for dtt in IUINT_TYPES + FLOAT_TYPES:
        arr = np.arange(10, dtype=dtt)
        assert_equal(best_write_scale_ftype(arr, 1, 0),
                     better_float_of(dtt, np.float32))
        assert_equal(best_write_scale_ftype(arr, 1, 0, np.float64),
                     better_float_of(dtt, np.float64))
        assert_equal(best_write_scale_ftype(arr, np.float32(2), 0),
                     better_float_of(dtt, np.float32))
        assert_equal(best_write_scale_ftype(arr, 1, np.float32(1)),
                     better_float_of(dtt, np.float32))
    # Overflowing ints with scaling results in upcast
    best_vals = ((np.float32, np.float64),)
    if np.longdouble in OK_FLOATS:
        best_vals += ((np.float64, np.longdouble),)
    for lower_t, higher_t in best_vals:
        # Information on this float
        L_info = type_info(lower_t)
        t_max = L_info['max']
        nmant = L_info['nmant'] # number of significand digits
        big_delta = lower_t(2**(floor_log2(t_max) - nmant)) # delta below max
        # Even large values that don't overflow don't change output
        arr = np.array([0, t_max], dtype=lower_t)
        assert_equal(best_write_scale_ftype(arr, 1, 0), lower_t)
        # Scaling > 1 reduces output values, so no upcast needed
        assert_equal(best_write_scale_ftype(arr, lower_t(1.01), 0), lower_t)
        # Scaling < 1 increases values, so upcast may be needed (and is here)
        assert_equal(best_write_scale_ftype(arr, lower_t(0.99), 0), higher_t)
        # Large minus offset on large array can cause upcast
        assert_equal(best_write_scale_ftype(arr, 1, -big_delta/2.01), lower_t)
        assert_equal(best_write_scale_ftype(arr, 1, -big_delta/2.0), higher_t)
        # With infs already in input, default type returns
        arr[0] = np.inf
        assert_equal(best_write_scale_ftype(arr, lower_t(0.5), 0), lower_t)
        arr[0] = -np.inf
        assert_equal(best_write_scale_ftype(arr, lower_t(0.5), 0), lower_t) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:41,代碼來源:test_utils.py

示例14: test_float128

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def test_float128(self):
        hdr = self.header_class()
        if have_binary128():
            hdr.set_data_dtype(np.longdouble)
            assert_equal(hdr.get_data_dtype().type, np.longdouble)
        else:
            assert_raises(HeaderDataError, hdr.set_data_dtype, np.longdouble) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:9,代碼來源:test_nifti1.py

示例15: _ftype4scaled_finite

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import longdouble [as 別名]
def _ftype4scaled_finite(tst_arr, slope, inter, direction='read',
                         default=np.float32):
    """ Smallest float type for scaling of `tst_arr` that does not overflow
    """
    assert direction in ('read', 'write')
    if not default in OK_FLOATS and default is np.longdouble:
        # Omitted longdouble
        return default
    def_ind = OK_FLOATS.index(default)
    # promote to arrays to avoid numpy scalar casting rules
    tst_arr = np.atleast_1d(tst_arr)
    slope = np.atleast_1d(slope)
    inter = np.atleast_1d(inter)
    warnings.filterwarnings('ignore', '.*overflow.*', RuntimeWarning)
    try:
        for ftype in OK_FLOATS[def_ind:]:
            tst_trans = tst_arr.copy()
            slope = slope.astype(ftype)
            inter = inter.astype(ftype)
            if direction == 'read': # as in reading of image from disk
                if slope != 1.0:
                    tst_trans = tst_trans * slope
                if inter != 0.0:
                    tst_trans = tst_trans + inter
            elif direction == 'write':
                if inter != 0.0:
                    tst_trans = tst_trans - inter
                if slope != 1.0:
                    tst_trans = tst_trans / slope
            if np.all(np.isfinite(tst_trans)):
                return ftype
    finally:
        warnings.filters.pop(0)
    raise ValueError('Overflow using highest floating point type') 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:36,代碼來源:volumeutils.py


注:本文中的numpy.longdouble方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。