本文整理匯總了Python中numpy.long方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.long方法的具體用法?Python numpy.long怎麽用?Python numpy.long使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.long方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_respect_dtype_singleton
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_respect_dtype_singleton(self):
# See gh-7203
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_equal(sample.dtype, np.dtype(dt))
for dt in (bool, int, np.long):
lbnd = 0 if dt is bool else np.iinfo(dt).min
ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
# gh-7284: Ensure that we get Python data types
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_(not hasattr(sample, 'dtype'))
assert_equal(type(sample), dt)
示例2: prepare_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True):
np.random.seed(1)
mnist_images = np.copy(mnist.train.images)
mnist_labels = np.copy(mnist.train.labels)
if merge_valset:
mnist_images = np.concatenate([mnist_images, np.copy(mnist.validation.images)], axis=0)
mnist_labels = np.concatenate([mnist_labels, np.copy(mnist.validation.labels)])
indices = np.arange(len(mnist_labels))
np.random.shuffle(indices)
mnist_images = mnist_images[indices]
mnist_labels = mnist_labels[indices].astype(np.long)
num_gold = int(len(mnist_labels)*gold_fraction)
num_silver = len(mnist_labels) - num_gold
for i in range(num_silver):
mnist_labels[i] = np.random.choice(num_classes, p=corruption_matrix[mnist_labels[i]])
dataset = {'x': mnist_images, 'y': mnist_labels}
gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]}
return dataset, gold, num_gold, num_silver
示例3: prepare_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True):
np.random.seed(1)
twitter_tweets = np.copy(X_train)
twitter_labels = np.copy(Y_train)
if merge_valset:
twitter_tweets = np.concatenate([twitter_tweets, np.copy(X_dev)], axis=0)
twitter_labels = np.concatenate([twitter_labels, np.copy(Y_dev)])
indices = np.arange(len(twitter_labels))
np.random.shuffle(indices)
twitter_tweets = twitter_tweets[indices]
twitter_labels = twitter_labels[indices].astype(np.long)
num_gold = int(len(twitter_labels)*gold_fraction)
num_silver = len(twitter_labels) - num_gold
for i in range(num_silver):
twitter_labels[i] = np.random.choice(num_classes, p=corruption_matrix[twitter_labels[i]])
dataset = {'x': twitter_tweets, 'y': twitter_labels}
gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]}
return dataset, gold, num_gold, num_silver
示例4: _is_integer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def _is_integer(x):
"""Determine whether some object ``x`` is an
integer type (int, long, etc). This is part of the
``fixes`` module, since Python 3 removes the long
datatype, we have to check the version major.
Parameters
----------
x : object
The item to assess whether is an integer.
Returns
-------
bool
True if ``x`` is an integer type
"""
return (not isinstance(x, (bool, np.bool))) and \
isinstance(x, (numbers.Integral, int, np.int, np.long, long)) # no long type in python 3
示例5: test_respect_dtype_singleton
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_respect_dtype_singleton(self):
# See gh-7203
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
sample = self.rfunc(lbnd, ubnd, dtype=dt)
self.assertEqual(sample.dtype, np.dtype(dt))
for dt in (np.bool, np.int, np.long):
lbnd = 0 if dt is np.bool else np.iinfo(dt).min
ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
# gh-7284: Ensure that we get Python data types
sample = self.rfunc(lbnd, ubnd, dtype=dt)
self.assertFalse(hasattr(sample, 'dtype'))
self.assertEqual(type(sample), dt)
示例6: test_attribute_wrapper
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_attribute_wrapper():
def attribute_value_test(attribute_value):
node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value)
model = make_model(make_graph([node], 'test_graph', [
make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]),
], []), producer_name='ngraph')
wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute')
return wrapped_attribute.get_value()
tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1])
assert attribute_value_test(1) == 1
assert type(attribute_value_test(1)) == np.long
assert attribute_value_test(1.0) == 1.0
assert type(attribute_value_test(1.0)) == np.float
assert attribute_value_test('test') == 'test'
assert attribute_value_test(tensor)._proto == tensor
assert attribute_value_test([1, 2, 3]) == [1, 2, 3]
assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0]
assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2']
assert attribute_value_test([tensor, tensor])[1]._proto == tensor
示例7: load_ft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def load_ft(data_dir, feature_name='GVCNN'):
data = scio.loadmat(data_dir)
lbls = data['Y'].astype(np.long)
if lbls.min() == 1:
lbls = lbls - 1
idx = data['indices'].item()
if feature_name == 'MVCNN':
fts = data['X'][0].item().astype(np.float32)
elif feature_name == 'GVCNN':
fts = data['X'][1].item().astype(np.float32)
else:
print(f'wrong feature name{feature_name}!')
raise IOError
idx_train = np.where(idx == 1)[0]
idx_test = np.where(idx == 0)[0]
return fts, lbls, idx_train, idx_test
示例8: makePathFromArrays
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def makePathFromArrays(points, tags, contours):
n_contours = len(contours)
n_points = len(tags)
assert len(points) >= n_points
assert points.shape[1:] == (2,)
if points.dtype != numpy.long:
points = numpy.floor(points + [0.5, 0.5])
points = points.astype(numpy.long)
assert tags.dtype == numpy.byte
assert contours.dtype == numpy.short
path = objc.objc_object(
c_void_p=_makePathFromArrays(
n_contours,
n_points,
points.ctypes.data_as(FT_Vector_p),
tags.ctypes.data_as(c_char_p),
contours.ctypes.data_as(c_short_p)))
# See comment in makePathFromOutline()
path.release()
return path
示例9: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def __init__(self, dataset_path, sep=',', engine='c', header='infer'):
data = pd.read_csv(dataset_path, sep=sep, engine=engine, header=header).to_numpy()[:, :3]
self.items = data[:, :2].astype(np.int) - 1 # -1 because ID begins from 1
self.targets = self.__preprocess_target(data[:, 2]).astype(np.float32)
self.field_dims = np.max(self.items, axis=0) + 1
self.user_field_idx = np.array((0, ), dtype=np.long)
self.item_field_idx = np.array((1,), dtype=np.long)
示例10: __getitem__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
np_array = np.frombuffer(
txn.get(struct.pack('>I', index)), dtype=np.uint32).astype(dtype=np.long)
return np_array[1:], np_array[0]
示例11: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def __init__(self, field_dims, output_dim=1):
super().__init__()
self.fc = torch.nn.Embedding(sum(field_dims), output_dim)
self.bias = torch.nn.Parameter(torch.zeros((output_dim,)))
self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long)
示例12: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def __call__(self, img, msk, cat, iscrowd):
# Random flip
if self.random_flip:
img, msk = self._random_flip(img, msk)
# Adjust scale, possibly at random
if self.random_scale is not None:
target_size = self._random_target_size()
else:
target_size = self.shortest_size
scale = self._adjusted_scale(img.size[0], img.size[1], target_size)
out_size = tuple(int(dim * scale) for dim in img.size)
img = img.resize(out_size, resample=Image.BILINEAR)
msk = [m.resize(out_size, resample=Image.NEAREST) for m in msk]
# Wrap in np.array
cat = np.array(cat, dtype=np.int32)
iscrowd = np.array(iscrowd, dtype=np.uint8)
# Image transformations
img = tfn.to_tensor(img)
img = self._normalize_image(img)
# Label transformations
msk = np.stack([np.array(m, dtype=np.int32, copy=False) for m in msk], axis=0)
msk, cat, iscrowd = self._compact_labels(msk, cat, iscrowd)
# Convert labels to torch and extract bounding boxes
msk = torch.from_numpy(msk.astype(np.long))
cat = torch.from_numpy(cat.astype(np.long))
iscrowd = torch.from_numpy(iscrowd)
bbx = extract_boxes(msk, cat.numel())
return dict(img=img, msk=msk, cat=cat, iscrowd=iscrowd, bbx=bbx)
示例13: test_random_integers_max_int
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_random_integers_max_int(self):
# Tests whether random_integers can generate the
# maximum allowed Python int that can be converted
# into a C long. Previous implementations of this
# method have thrown an OverflowError when attempting
# to generate this integer.
with suppress_warnings() as sup:
w = sup.record(DeprecationWarning)
actual = np.random.random_integers(np.iinfo('l').max,
np.iinfo('l').max)
assert_(len(w) == 1)
desired = np.iinfo('l').max
assert_equal(actual, desired)
示例14: test_matrix_multiply
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_matrix_multiply(self):
self.compare_matrix_multiply_results(np.long)
self.compare_matrix_multiply_results(np.double)
示例15: test_signed_integer_division_overflow
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import long [as 別名]
def test_signed_integer_division_overflow(self):
# Ticket #1317.
def test_type(t):
min = np.array([np.iinfo(t).min])
min //= -1
with np.errstate(divide="ignore"):
for t in (np.int8, np.int16, np.int32, np.int64, int, np.long):
test_type(t)