本文整理匯總了Python中numpy.logspace方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.logspace方法的具體用法?Python numpy.logspace怎麽用?Python numpy.logspace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.logspace方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_dist_sma
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_dist_sma(self):
"""
Test that smas outside of the range have zero probability
"""
for mod in self.allmods:
if 'dist_sma' in mod.__dict__:
with RedirectStreams(stdout=self.dev_null):
pp = mod(**self.spec)
a = np.logspace(np.log10(pp.arange[0].to('AU').value/10.),np.log10(pp.arange[1].to('AU').value*10.),100)
fa = pp.dist_sma(a)
self.assertTrue(np.all(fa[a < pp.arange[0].to('AU').value] == 0),'dist_sma high bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fa[a > pp.arange[1].to('AU').value] == 0),'dist_sma low bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fa[(a >= pp.arange[0].to('AU').value) & (a <= pp.arange[1].to('AU').value)] >= 0.),'dist_sma generates negative densities within range for %s'%mod.__name__)
示例2: test_dist_radius
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_dist_radius(self):
"""
Test that radii outside of the range have zero probability
"""
for mod in self.allmods:
if 'dist_radius' in mod.__dict__:
with RedirectStreams(stdout=self.dev_null):
pp = mod(**self.spec)
Rp = np.logspace(np.log10(pp.Rprange[0].to('earthRad').value/10.),np.log10(pp.Rprange[1].to('earthRad').value*100.),100)
fr = pp.dist_radius(Rp)
self.assertTrue(np.all(fr[Rp < pp.Rprange[0].to('earthRad').value] == 0),'dist_radius high bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fr[Rp > pp.Rprange[1].to('earthRad').value] == 0),'dist_radius high bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fr[(Rp >= pp.Rprange[0].to('earthRad').value) & (Rp <= pp.Rprange[1].to('earthRad').value)] > 0),'dist_radius generates zero probabilities within range for %s'%mod.__name__)
示例3: test_dist_mass
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_dist_mass(self):
"""
Test that masses outside of the range have zero probability
"""
for mod in self.allmods:
if 'dist_mass' in mod.__dict__:
with RedirectStreams(stdout=self.dev_null):
pp = mod(**self.spec)
Mp = np.logspace(np.log10(pp.Mprange[0].value/10.),np.log10(pp.Mprange[1].value*100.),100)
fr = pp.dist_mass(Mp)
self.assertTrue(np.all(fr[Mp < pp.Mprange[0].value] == 0),'dist_mass high bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fr[Mp > pp.Mprange[1].value] == 0),'dist_mass high bound failed for %s'%mod.__name__)
self.assertTrue(np.all(fr[(Mp >= pp.Mprange[0].value) & (Mp <= pp.Mprange[1].value)] > 0))
示例4: test_dist_sma_radius
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_dist_sma_radius(self):
"""
Test that sma and radius values outside of the range have zero probability
"""
for mod in self.allmods:
if 'dist_sma_radius' in mod.__dict__:
with RedirectStreams(stdout=self.dev_null):
pp = mod(**self.spec)
a = np.logspace(np.log10(pp.arange[0].value/10.),np.log10(pp.arange[1].value*100),100)
Rp = np.logspace(np.log10(pp.Rprange[0].value/10.),np.log10(pp.Rprange[1].value*100),100)
aa, RR = np.meshgrid(a,Rp)
fr = pp.dist_sma_radius(aa,RR)
self.assertTrue(np.all(fr[aa < pp.arange[0].value] == 0),'dist_sma_radius low bound failed on sma for %s'%mod.__name__)
self.assertTrue(np.all(fr[aa > pp.arange[1].value] == 0),'dist_sma_radius high bound failed on sma for %s'%mod.__name__)
self.assertTrue(np.all(fr[RR < pp.Rprange[0].value] == 0),'dist_sma_radius low bound failed on radius for %s'%mod.__name__)
self.assertTrue(np.all(fr[RR > pp.Rprange[1].value] == 0),'dist_sma_radius high bound failed on radius for %s'%mod.__name__)
self.assertTrue(np.all(fr[(aa > pp.arange[0].value) & (aa < pp.arange[1].value) & (RR > pp.Rprange[0].value) & (RR < pp.Rprange[1].value)] > 0),'dist_sma_radius is improper pdf for %s'%mod.__name__)
示例5: test_nocross
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_nocross(self):
# what happens when no gain/phase crossover?
s = TransferFunction([1, 0], [1])
h1 = 1/(1+s)
h2 = 3*(10+s)/(2+s)
h3 = 0.01*(10-s)/(2+s)/(1+s)
gm, pm, wm, wg, wp, ws = stability_margins(h1)
assert_array_almost_equal(
[gm, pm, wg, wp],
[float('Inf'), float('Inf'), float('NaN'), float('NaN')])
gm, pm, wm, wg, wp, ws = stability_margins(h2)
self.assertEqual(pm, float('Inf'))
gm, pm, wm, wg, wp, ws = stability_margins(h3)
self.assertTrue(np.isnan(wp))
omega = np.logspace(-2,2, 100)
out1b = stability_margins(FRD(h1, omega))
out2b = stability_margins(FRD(h2, omega))
out3b = stability_margins(FRD(h3, omega))
示例6: test_feedback_args
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_feedback_args(self):
# Added 25 May 2019 to cover missing exception handling in feedback()
# If first argument is not LTI or convertable, generate an exception
args = ([1], self.sys2)
self.assertRaises(TypeError, ctrl.feedback, *args)
# If second argument is not LTI or convertable, generate an exception
args = (self.sys1, np.array([1]))
self.assertRaises(TypeError, ctrl.feedback, *args)
# Convert first argument to FRD, if needed
h = TransferFunction([1], [1, 2, 2])
omega = np.logspace(-1, 2, 10)
frd = ctrl.FRD(h, omega)
sys = ctrl.feedback(1, frd)
self.assertTrue(isinstance(sys, ctrl.FRD))
示例7: testMIMOSmooth
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def testMIMOSmooth(self):
sys = StateSpace([[-0.5, 0.0], [0.0, -1.0]],
[[1.0, 0.0], [0.0, 1.0]],
[[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]])
sys2 = np.matrix([[1, 0, 0], [0, 1, 0]]) * sys
omega = np.logspace(-1, 2, 10)
f1 = FRD(sys, omega, smooth=True)
f2 = FRD(sys2, omega, smooth=True)
np.testing.assert_array_almost_equal(
(f1*f2).freqresp([0.1, 1.0, 10])[0],
(sys*sys2).freqresp([0.1, 1.0, 10])[0])
np.testing.assert_array_almost_equal(
(f1*f2).freqresp([0.1, 1.0, 10])[1],
(sys*sys2).freqresp([0.1, 1.0, 10])[1])
np.testing.assert_array_almost_equal(
(f1*f2).freqresp([0.1, 1.0, 10])[2],
(sys*sys2).freqresp([0.1, 1.0, 10])[2])
示例8: test_size_mismatch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_size_mismatch(self):
sys1 = FRD(ct.rss(2, 2, 2), np.logspace(-1, 1, 10))
# Different number of inputs
sys2 = FRD(ct.rss(3, 1, 2), np.logspace(-1, 1, 10))
self.assertRaises(ValueError, FRD.__add__, sys1, sys2)
# Different number of outputs
sys2 = FRD(ct.rss(3, 2, 1), np.logspace(-1, 1, 10))
self.assertRaises(ValueError, FRD.__add__, sys1, sys2)
# Inputs and outputs don't match
self.assertRaises(ValueError, FRD.__mul__, sys2, sys1)
# Feedback mismatch
self.assertRaises(ValueError, FRD.feedback, sys2, sys1)
示例9: test_evalfr_deprecated
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_evalfr_deprecated(self):
sys_tf = ct.tf([1], [1, 2, 1])
frd_tf = FRD(sys_tf, np.logspace(-1, 1, 3))
# Deprecated version of the call (should generate warning)
import warnings
with warnings.catch_warnings():
# Make warnings generate an exception
warnings.simplefilter('error')
# Make sure that we get a pending deprecation warning
self.assertRaises(PendingDeprecationWarning, frd_tf.evalfr, 1.)
# FRD.evalfr() is being deprecated
import warnings
with warnings.catch_warnings():
# Make warnings generate an exception
warnings.simplefilter('error')
# Make sure that we get a pending deprecation warning
self.assertRaises(PendingDeprecationWarning, frd_tf.evalfr, 1.)
示例10: test_custom_bode_default
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_custom_bode_default(self):
ct.config.defaults['bode.dB'] = True
ct.config.defaults['bode.deg'] = True
ct.config.defaults['bode.Hz'] = True
# Generate a Bode plot
plt.figure()
omega = np.logspace(-3, 3, 100)
ct.bode_plot(self.sys, omega, dB=True)
mag_x, mag_y = (((plt.gcf().axes[0]).get_lines())[0]).get_data()
np.testing.assert_almost_equal(mag_y[0], 20*log10(10), decimal=3)
# Override defaults
plt.figure()
ct.bode_plot(self.sys, omega, Hz=True, deg=False, dB=True)
mag_x, mag_y = (((plt.gcf().axes[0]).get_lines())[0]).get_data()
phase_x, phase_y = (((plt.gcf().axes[1]).get_lines())[0]).get_data()
np.testing.assert_almost_equal(mag_x[0], 0.001 / (2*pi), decimal=6)
np.testing.assert_almost_equal(mag_y[0], 20*log10(10), decimal=3)
np.testing.assert_almost_equal(phase_y[-1], -pi, decimal=2)
ct.reset_defaults()
示例11: test_celer_path
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_celer_path(sparse_X, alphas, pb):
"""Test Lasso path convergence."""
X, y = build_dataset(n_samples=30, n_features=50, sparse_X=sparse_X)
if pb == "logreg":
y = np.sign(y)
n_samples = X.shape[0]
if alphas is not None:
alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples
n_alphas = 10
alphas = alpha_max * np.logspace(0, -2, n_alphas)
tol = 1e-6
alphas, coefs, gaps, thetas, n_iters = celer_path(
X, y, pb, alphas=alphas, tol=tol, return_thetas=True,
verbose=1, return_n_iter=True)
np.testing.assert_array_less(gaps, tol)
# hack because array_less wants strict inequality
np.testing.assert_array_less(0.99, n_iters)
示例12: test_warm_start
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def test_warm_start():
"""Test Lasso path convergence."""
X, y = build_dataset(
n_samples=100, n_features=100, sparse_X=True)
n_samples, n_features = X.shape
alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples
n_alphas = 10
alphas = alpha_max * np.logspace(0, -2, n_alphas)
reg1 = Lasso(tol=1e-6, warm_start=True, p0=10)
reg1.coef_ = np.zeros(n_features)
for alpha in alphas:
reg1.set_params(alpha=alpha)
reg1.fit(X, y)
# refitting with warm start should take less than 2 iters:
reg1.fit(X, y)
# hack because assert_array_less does strict comparison...
np.testing.assert_array_less(reg1.n_iter_, 2.01)
示例13: _define_line_spacing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def _define_line_spacing(self, maximum_distance, spacing, as_log=False):
"""
The user may wish to define the line spacing in either log or
linear space
"""
nvals = int(maximum_distance / spacing) + 1
if as_log:
spacings = np.logspace(-3., np.log10(maximum_distance), nvals)
spacings[0] = 0.0
else:
spacings = np.linspace(0.0, maximum_distance, nvals)
if spacings[-1] < (maximum_distance - 1.0E-7):
spacings = np.hstack([spacings, maximum_distance])
return spacings
示例14: PlotEStarRStarTheoretical
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def PlotEStarRStarTheoretical():
"""
This makes the theoretical E* vs R* plot. It prints to the current open figure.
SMM Note: This would be better if it used a supploed figure. Can the default be get_clf()?
MDH
"""
# Calculate analytical relationship
EStar = np.logspace(-1,3,1000)
RStar = CalculateRStar(EStar)
# Plot with open figure
plt.plot(EStar,RStar,'k--')
#-------------------------------------------------------------------------------#
# PLOTTING FUNCTIONS
#-------------------------------------------------------------------------------#
# SMM: Checked and working 13/06/2018
示例15: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logspace [as 別名]
def __init__(self, base_estimator=LogisticRegression(penalty='l1'), lambda_name='C',
lambda_grid=np.logspace(-5, -2, 25), n_bootstrap_iterations=100,
sample_fraction=0.5, threshold=0.6, bootstrap_func=bootstrap_without_replacement,
bootstrap_threshold=None, verbose=0, n_jobs=1, pre_dispatch='2*n_jobs',
random_state=None):
self.base_estimator = base_estimator
self.lambda_name = lambda_name
self.lambda_grid = lambda_grid
self.n_bootstrap_iterations = n_bootstrap_iterations
self.sample_fraction = sample_fraction
self.threshold = threshold
self.bootstrap_func = bootstrap_func
self.bootstrap_threshold = bootstrap_threshold
self.verbose = verbose
self.n_jobs = n_jobs
self.pre_dispatch = pre_dispatch
self.random_state = random_state