本文整理匯總了Python中numpy.logical_xor方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.logical_xor方法的具體用法?Python numpy.logical_xor怎麽用?Python numpy.logical_xor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.logical_xor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例2: test_truth_table_logical
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
示例3: test_reduce
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def test_reduce(self):
none = np.array([0, 0, 0, 0], bool)
some = np.array([1, 0, 1, 1], bool)
every = np.array([1, 1, 1, 1], bool)
empty = np.array([], bool)
arrs = [none, some, every, empty]
for arr in arrs:
assert_equal(np.logical_and.reduce(arr), all(arr))
for arr in arrs:
assert_equal(np.logical_or.reduce(arr), any(arr))
for arr in arrs:
assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
示例4: update
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def update(self, actions, board, layers, backdrop, things, the_plot):
# Where are the laser bolts? Only bolts from the player kill a Marauder.
bolts = np.logical_or.reduce([layers[c] for c in UPWARD_BOLT_CHARS], axis=0)
hits = bolts & self.curtain # Any hits to Marauders?
np.logical_xor(self.curtain, hits, self.curtain) # If so, zap the marauder...
the_plot.add_reward(np.sum(hits)*10) # ...and supply a reward.
# Save the identities of marauder-striking bolts in the Plot.
the_plot['marauder_hitters'] = [chr(c) for c in board[hits]]
# If no Marauders are left, or if any are sitting on row 10, end the game.
if (not self.curtain.any()) or self.curtain[10, :].any():
return the_plot.terminate_episode() # i.e. return None.
# We move faster if there are fewer Marauders. The odd divisor causes speed
# jumps to align on the high sides of multiples of 8; so, speed increases as
# the number of Marauders decreases to 32 (or 24 etc.), not 31 (or 23 etc.).
if the_plot.frame % max(1, np.sum(self.curtain)//8.0000001): return
# If any Marauder reaches either side of the screen, reverse horizontal
# motion and advance vertically one row.
if np.any(self.curtain[:, 0] | self.curtain[:, -1]):
self._dx = -self._dx
self.curtain[:] = np.roll(self.curtain, shift=1, axis=0)
self.curtain[:] = np.roll(self.curtain, shift=self._dx, axis=1)
示例5: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例6: _compute_masks
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def _compute_masks(self):
"""Receives the attenuation and delay peaks and computes a mask to be applied to the signal for source
separation.
"""
# compute masks for separation
best_so_far = np.inf * np.ones_like(self.stft_ch0, dtype=float)
for i in range(0, self.num_sources):
mask_array = np.zeros_like(self.stft_ch0, dtype=bool)
phase = np.exp(-1j * self.frequency_matrix * self.delay_peak[i])
score = np.abs(self.atn_peak[i] * phase * self.stft_ch0 - self.stft_ch1) ** 2 / (1 + self.atn_peak[i] ** 2)
mask = (score < best_so_far)
mask_array[mask] = True
background_mask = self.mask_type(np.array(mask_array))
self.result_masks.append(background_mask)
self.result_masks[0].mask = np.logical_xor(self.result_masks[i].mask, self.result_masks[0].mask)
best_so_far[mask] = score[mask]
# Compute first mask based on what the other masks left remaining
self.result_masks[0].mask = np.logical_not(self.result_masks[0].mask)
return self.result_masks
示例7: generate_stimulus_xor
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def generate_stimulus_xor(stim_times, gen_burst, n_inputs=2):
inp_states = np.random.randint(2, size=(n_inputs, np.size(stim_times)))
inp_spikes = []
for times in ma.masked_values(inp_states, 0) * stim_times:
# for each input (neuron): generate spikes according to state (=1) and stimulus time-grid
spikes = np.concatenate([t + gen_burst() for t in times.compressed()])
# round to simulation precision
spikes *= 10
spikes = spikes.round() + 1.0
spikes = spikes / 10.0
inp_spikes.append(spikes)
# astype(int) could be omitted, because False/True has the same semantics
targets = np.logical_xor(*inp_states).astype(int)
return inp_spikes, targets
示例8: augment_occlusion_mask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def augment_occlusion_mask(self, masks, verbose=False, min_trans = 0.2, max_trans=0.7, max_occl = 0.25,min_occl = 0.0):
new_masks = np.zeros_like(masks,dtype=np.bool)
occl_masks_batch = self.random_syn_masks[np.random.choice(len(self.random_syn_masks),len(masks))]
for idx,mask in enumerate(masks):
occl_mask = occl_masks_batch[idx]
while True:
trans_x = int(np.random.choice([-1,1])*(np.random.rand()*(max_trans-min_trans) + min_trans)*occl_mask.shape[0])
trans_y = int(np.random.choice([-1,1])*(np.random.rand()*(max_trans-min_trans) + min_trans)*occl_mask.shape[1])
M = np.float32([[1,0,trans_x],[0,1,trans_y]])
transl_occl_mask = cv2.warpAffine(occl_mask,M,(occl_mask.shape[0],occl_mask.shape[1]))
overlap_matrix = np.invert(mask.astype(np.bool)) * transl_occl_mask.astype(np.bool)
overlap = len(overlap_matrix[overlap_matrix==True])/float(len(mask[mask==0]))
if overlap < max_occl and overlap > min_occl:
new_masks[idx,...] = np.logical_xor(mask.astype(np.bool), overlap_matrix)
if verbose:
print('overlap is ', overlap)
break
return new_masks
示例9: testBCast
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def testBCast(self):
shapes = [
([1, 3, 2], [1]),
([1, 3, 2], [2]),
([1, 3, 2], [3, 2]),
([1, 3, 2], [3, 1]),
([1, 3, 2], [1, 3, 2]),
([1, 3, 2], [2, 3, 1]),
([1, 3, 2], [2, 1, 1]),
([1, 3, 2], [1, 3, 1]),
([2, 1, 5], [2, 3, 1]),
([2, 0, 5], [2, 0, 1]),
([2, 3, 0], [2, 3, 1]),
]
for (xs, ys) in shapes:
x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs)
y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys)
for use_gpu in [True, False]:
self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu)
self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu)
self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu)
示例10: last_x2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def last_x2(prn,start,len):
idx = start + np.arange(len)
idx_x2 = idx % 15345037
idx_a = idx % 15345000
hold = idx_a>=(15345000-1069)
idx_x2_a = idx_x2.copy()
idx_x2_a[hold] = 4091
p_x2a = x2a[idx_x2_a % 4092]
idx_b = idx % 15345000
hold = idx_b>=(15345000-965)
idx_x2_b = idx_x2.copy()
idx_x2_b[hold] = 4092
p_x2b = x2b[idx_x2_b % 4093]
return np.logical_xor(p_x2a,p_x2b)
示例11: convert_traversible_to_graph
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def convert_traversible_to_graph(traversible, ff_cost=1., fo_cost=1.,
oo_cost=1., connectivity=4):
assert(connectivity == 4 or connectivity == 8)
sz_x = traversible.shape[1]
sz_y = traversible.shape[0]
g, nodes = generate_lattice(sz_x, sz_y)
# Assign costs.
edge_wts = g.new_edge_property('float')
g.edge_properties['wts'] = edge_wts
wts = np.ones(g.num_edges(), dtype=np.float32)
edge_wts.get_array()[:] = wts
if connectivity == 8:
add_diagonal_edges(g, nodes, sz_x, sz_y, np.sqrt(2.))
se = np.array([[int(e.source()), int(e.target())] for e in g.edges()])
s_xy = nodes[se[:,0]]
t_xy = nodes[se[:,1]]
s_t = np.ravel_multi_index((s_xy[:,1], s_xy[:,0]), traversible.shape)
t_t = np.ravel_multi_index((t_xy[:,1], t_xy[:,0]), traversible.shape)
s_t = traversible.ravel()[s_t]
t_t = traversible.ravel()[t_t]
wts = np.zeros(g.num_edges(), dtype=np.float32)
wts[np.logical_and(s_t == True, t_t == True)] = ff_cost
wts[np.logical_and(s_t == False, t_t == False)] = oo_cost
wts[np.logical_xor(s_t, t_t)] = fo_cost
edge_wts = g.edge_properties['wts']
for i, e in enumerate(g.edges()):
edge_wts[e] = edge_wts[e] * wts[i]
# d = edge_wts.get_array()*1.
# edge_wts.get_array()[:] = d*wts
return g, nodes
示例12: encodeMask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def encodeMask(M):
"""
Encode binary mask M using run-length encoding.
:param M (bool 2D array) : binary mask to encode
:return: R (object RLE) : run-length encoding of binary mask
"""
[h, w] = M.shape
M = M.flatten(order='F')
N = len(M)
counts_list = []
pos = 0
# counts
counts_list.append(1)
diffs = np.logical_xor(M[0:N-1], M[1:N])
for diff in diffs:
if diff:
pos +=1
counts_list.append(1)
else:
counts_list[pos] += 1
# if array starts from 1. start with 0 counts for 0
if M[0] == 1:
counts_list = [0] + counts_list
return {'size': [h, w],
'counts': counts_list ,
}
示例13: encodeMask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def encodeMask(M):
"""
Encode binary mask M using run-length encoding.
:param M (bool 2D array) : binary mask to encode
:return: R (object RLE) : run-length encoding of binary mask
"""
[h, w] = M.shape
M = M.flatten(order='F')
N = len(M)
counts_list = []
pos = 0
# counts
counts_list.append(1)
diffs = np.logical_xor(M[0:N - 1], M[1:N])
for diff in diffs:
if diff:
pos += 1
counts_list.append(1)
else:
counts_list[pos] += 1
# if array starts from 1. start with 0 counts for 0
if M[0] == 1:
counts_list = [0] + counts_list
return {'size': [h, w],
'counts': counts_list,
}
示例14: test_logical_and_or_xor
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def test_logical_and_or_xor(self):
assert_array_equal(self.t | self.t, self.t)
assert_array_equal(self.f | self.f, self.f)
assert_array_equal(self.t | self.f, self.t)
assert_array_equal(self.f | self.t, self.t)
np.logical_or(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.t)
assert_array_equal(self.t & self.t, self.t)
assert_array_equal(self.f & self.f, self.f)
assert_array_equal(self.t & self.f, self.f)
assert_array_equal(self.f & self.t, self.f)
np.logical_and(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.t)
assert_array_equal(self.t ^ self.t, self.f)
assert_array_equal(self.f ^ self.f, self.f)
assert_array_equal(self.t ^ self.f, self.t)
assert_array_equal(self.f ^ self.t, self.t)
np.logical_xor(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.f)
assert_array_equal(self.nm & self.t, self.nm)
assert_array_equal(self.im & self.f, False)
assert_array_equal(self.nm & True, self.nm)
assert_array_equal(self.im & False, self.f)
assert_array_equal(self.nm | self.t, self.t)
assert_array_equal(self.im | self.f, self.im)
assert_array_equal(self.nm | True, self.t)
assert_array_equal(self.im | False, self.im)
assert_array_equal(self.nm ^ self.t, self.im)
assert_array_equal(self.im ^ self.f, self.im)
assert_array_equal(self.nm ^ True, self.im)
assert_array_equal(self.im ^ False, self.im)
示例15: make_boundaries
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import logical_xor [as 別名]
def make_boundaries(label, thickness=None):
"""
Input is an image label, output is a numpy array mask encoding the boundaries of the objects
Extract pixels at the true boundary by dilation - erosion of label.
Don't just pick the void label as it is not exclusive to the boundaries.
"""
assert(thickness is not None)
import skimage.morphology as skm
void = 255
mask = np.logical_and(label > 0, label != void)[0]
selem = skm.disk(thickness)
boundaries = np.logical_xor(skm.dilation(mask, selem),
skm.erosion(mask, selem))
return boundaries