當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.log方法代碼示例

本文整理匯總了Python中numpy.log方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.log方法的具體用法?Python numpy.log怎麽用?Python numpy.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_RSM

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def load_RSM(filename):
    om, tt, psd = xu.io.getxrdml_map(filename)
    om = np.deg2rad(om)
    tt = np.deg2rad(tt)
    wavelength = 1.54056

    q_y = (1 / wavelength) * (np.cos(tt) - np.cos(2 * om - tt))
    q_x = (1 / wavelength) * (np.sin(tt) - np.sin(2 * om - tt))

    xi = np.linspace(np.min(q_x), np.max(q_x), 100)
    yi = np.linspace(np.min(q_y), np.max(q_y), 100)
    psd[psd < 1] = 1
    data_grid = griddata(
        (q_x, q_y), psd, (xi[None, :], yi[:, None]), fill_value=1, method="cubic"
    )
    nx, ny = data_grid.shape

    range_values = [np.min(q_x), np.max(q_x), np.min(q_y), np.max(q_y)]
    output_data = (
        Panel(np.log(data_grid).reshape(nx, ny, 1), minor_axis=["RSM"])
        .transpose(2, 0, 1)
        .to_frame()
    )

    return range_values, output_data 
開發者ID:materialsproject,項目名稱:MPContribs,代碼行數:27,代碼來源:pre_submission.py

示例2: wave2input_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def wave2input_image(wave, window, pos=0, pad=0):
    wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
    wave_image *= window
    spectrum_image = np.fft.fft(wave_image, axis=1)
    input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)

    np.clip(input_image, 1000, None, out=input_image)
    np.log(input_image, out=input_image)
    input_image += bias
    input_image /= scale

    if np.max(input_image) > 0.95:
        print('input image max bigger than 0.95', np.max(input_image))
    if np.min(input_image) < 0.05:
        print('input image min smaller than 0.05', np.min(input_image))

    return input_image 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:19,代碼來源:dataset.py

示例3: cost0

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def cost0(params, input_size, hidden_size, num_labels, X, y, learning_rate):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    
    # reshape the parameter array into parameter matrices for each layer
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    
    # run the feed-forward pass
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    
    # compute the cost
    J = 0
    for i in range(m):
        first_term = np.multiply(-y[i,:], np.log(h[i,:]))
        second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
        J += np.sum(first_term - second_term)
    
    J = J / m
    
    return J 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:24,代碼來源:5_nueral_network.py

示例4: cost

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def cost(params, input_size, hidden_size, num_labels, X, y, learning_rate):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    
    # reshape the parameter array into parameter matrices for each layer
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    
    # run the feed-forward pass
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    
    # compute the cost
    J = 0
    for i in range(m):
        first_term = np.multiply(-y[i,:], np.log(h[i,:]))
        second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
        J += np.sum(first_term - second_term)
    
    J = J / m
    
    # add the cost regularization term
    J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2)))
    
    return J 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:27,代碼來源:5_nueral_network.py

示例5: apply_cmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
    '''
    apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
      they are used to scale z.

    Note that this function can automatically rescale data into log-space if the colormap is a
    neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
    optional argument logrescale=True.
    '''
    zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
    zs = np.asarray(zs, dtype='float')
    if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
    if logrescale:
        if vmin is None: vmin = np.log(np.nanmin(zs))
        if vmax is None: vmax = np.log(np.nanmax(zs))
        mn = np.exp(vmin)
        u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
    else:        
        if vmin is None: vmin = np.nanmin(zs)
        if vmax is None: vmax = np.nanmax(zs)
        u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
    u[np.isnan(u)] = -np.inf
    return cmap(u) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例6: to_logeccen

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def to_logeccen(ecc, vmin=0, vmax=90, offset=0.75):
    '''
    to_logeccen(ecc) yields a rescaled log-space version of the eccentricity value (or values) ecc,
      which are extracted in degrees.
    to_logeccen(xy_matrix) rescales all the (x,y) points in the given matrix to have lox-spaced
      eccentricity values.

    to_logeccen is the inverse of from_logeccen.
    '''
    if pimms.is_matrix(ecc):
        xy = np.asarray(pimms.mag(ecc, 'deg'))
        trq = xy.shape[0] != 2
        xy = np.transpose(xy) if trq else np.asarray(xy)
        ecc = np.sqrt(np.sum(xy**2, axis=0))
        esc = to_logeccen(ecc, vmin=vmin, vmax=vmax, offset=offset)
        ecc = zinv(ecc)
        xy = xy * [ecc,ecc] * [esc,esc]
        return xy.T if trq else xy
    else:
        (ecc,vmin,vmax,offset) = [np.asarray(pimms.mag(u, 'deg')) for u in (ecc,vmin,vmax,offset)]
        log_ecc = np.log(ecc + offset)
        (vmin, vmax) = [np.log(u + offset) for u in (vmin, vmax)]
        return (log_ecc - vmin) / (vmax - vmin) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:retinotopy.py

示例7: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def update(self, labels, preds):
        """Updates the internal evaluation result.

        Parameters
        ----------
        labels : list of `NDArray`
            The labels of the data.

        preds : list of `NDArray`
            Predicted values.
        """
        mx.metric.check_label_shapes(labels, preds)

        for label, pred in zip(labels, preds):
            label = label.asnumpy()
            pred = pred.asnumpy()
            pred = np.column_stack((1 - pred, pred))

            label = label.ravel()
            num_examples = pred.shape[0]
            assert label.shape[0] == num_examples, (label.shape[0], num_examples)
            prob = pred[np.arange(num_examples, dtype=np.int64), np.int64(label)]
            self.sum_metric += (-np.log(prob + self.eps)).sum()
            self.num_inst += num_examples 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:metric.py

示例8: Perplexity

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def Perplexity(label, pred):
    """ Calculates prediction perplexity

    Args:
        label (mx.nd.array): labels array
        pred (mx.nd.array): prediction array

    Returns:
        float: calculated perplexity

    """

    # collapse the time, batch dimension
    label = label.reshape((-1,))
    pred = pred.reshape((-1, pred.shape[-1]))

    loss = 0.
    for i in range(pred.shape[0]):
        loss += -np.log(max(1e-10, pred[i][int(label[i])]))
    return np.exp(loss / label.size) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:rnn_cell_demo.py

示例9: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def update(self, labels, preds):
        """
        Implementation of updating metrics
        """
        # get generated multi label from network
        cls_prob = preds[0].asnumpy()
        loc_loss = preds[1].asnumpy()
        cls_label = preds[2].asnumpy()
        valid_count = np.sum(cls_label >= 0)
        # overall accuracy & object accuracy
        label = cls_label.flatten()
        mask = np.where(label >= 0)[0]
        indices = np.int64(label[mask])
        prob = cls_prob.transpose((0, 2, 1)).reshape((-1, cls_prob.shape[1]))
        prob = prob[mask, indices]
        self.sum_metric[0] += (-np.log(prob + self.eps)).sum()
        self.num_inst[0] += valid_count
        # smoothl1loss
        self.sum_metric[1] += np.sum(loc_loss)
        self.num_inst[1] += valid_count 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:metric.py

示例10: logging_config

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def logging_config(name=None, level=logging.DEBUG, console_level=logging.DEBUG):
    if name is None:
        name = inspect.stack()[1][1].split('.')[0]
    folder = os.path.join(os.getcwd(), name)
    if not os.path.exists(folder):
        os.makedirs(folder)
    logpath = os.path.join(folder, name + ".log")
    print("All Logs will be saved to %s"  %logpath)
    logging.root.setLevel(level)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logfile = logging.FileHandler(logpath)
    logfile.setLevel(level)
    logfile.setFormatter(formatter)
    logging.root.addHandler(logfile)
    #TODO Update logging patterns in other files
    logconsole = logging.StreamHandler()
    logconsole.setLevel(console_level)
    logconsole.setFormatter(formatter)
    logging.root.addHandler(logconsole)
    return folder 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:utils.py

示例11: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def update(self, labels, preds):
        pred = preds[self.pred.index('rpn_cls_prob')]
        label = labels[self.label.index('rpn_label')]

        # label (b, p)
        label = label.asnumpy().astype('int32').reshape((-1))
        # pred (b, c, p) or (b, c, h, w) --> (b, p, c) --> (b*p, c)
        pred = pred.asnumpy().reshape((pred.shape[0], pred.shape[1], -1)).transpose((0, 2, 1))
        pred = pred.reshape((label.shape[0], -1))

        # filter with keep_inds
        keep_inds = np.where(label != -1)[0]
        label = label[keep_inds]
        cls = pred[keep_inds, label]

        cls += 1e-14
        cls_loss = -1 * np.log(cls)
        cls_loss = np.sum(cls_loss)
        self.sum_metric += cls_loss
        self.num_inst += label.shape[0] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:metric.py

示例12: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def update(self, labels, preds):
        """Updates the internal evaluation result.

        Parameters
        ----------
        labels : list of `NDArray`
            The labels of the data.

        preds : list of `NDArray`
            Predicted values.
        """
        labels, preds = check_label_shapes(labels, preds, True)

        for label, pred in zip(labels, preds):
            label = label.asnumpy()
            pred = pred.asnumpy()

            label = label.ravel()
            assert label.shape[0] == pred.shape[0]

            prob = pred[numpy.arange(label.shape[0]), numpy.int64(label)]
            self.sum_metric += (-numpy.log(prob + self.eps)).sum()
            self.num_inst += label.shape[0] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:metric.py

示例13: test_bce_loss

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def test_bce_loss():
    N = 20
    data = mx.random.uniform(-1, 1, shape=(N, 20))
    label = mx.nd.array(np.random.randint(2, size=(N,)), dtype='float32')
    data_iter = mx.io.NDArrayIter(data, label, batch_size=10, label_name='label')
    output = get_net(1)
    l = mx.symbol.Variable('label')
    Loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
    loss = Loss(output, l)
    loss = mx.sym.make_loss(loss)
    mod = mx.mod.Module(loss, data_names=('data',), label_names=('label',))
    mod.fit(data_iter, num_epoch=200, optimizer_params={'learning_rate': 0.01},
            eval_metric=mx.metric.Loss(), optimizer='adam',
            initializer=mx.init.Xavier(magnitude=2))
    assert mod.score(data_iter, eval_metric=mx.metric.Loss())[0][1] < 0.01
    # Test against npy
    data = mx.random.uniform(-5, 5, shape=(10,))
    label = mx.random.uniform(0, 1, shape=(10,))
    mx_bce_loss = Loss(data, label).asnumpy()
    prob_npy = 1.0 / (1.0 + np.exp(-data.asnumpy()))
    label_npy = label.asnumpy()
    npy_bce_loss = - label_npy * np.log(prob_npy) - (1 - label_npy) * np.log(1 - prob_npy)
    assert_almost_equal(mx_bce_loss, npy_bce_loss, rtol=1e-4, atol=1e-5) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:test_loss.py

示例14: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def __init__(self, choice="sigmoid"):
        """
        :param choice: Which activation function you want, must be in self.available
        """
        if choice not in self.available:
            msg = "Choice of activation (" + choice + ") not available!"
            log.out.error(msg)
            raise ValueError(msg)
        elif choice == "tanh":
            self.function = self._tanh
        elif choice == "tanhpos":
            self.function = self._tanhpos
        elif choice == "sigmoid":
            self.function = self._sigmoid
        elif choice == "softplus":
            self.function = self._softplus
        elif choice == "relu":
            self.function = self._relu
        elif choice == "leakyrelu":
            self.function = self._leakyrelu 
開發者ID:uptake,項目名稱:numpynet,代碼行數:22,代碼來源:common.py

示例15: _compute_eps

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import log [as 別名]
def _compute_eps(log_moments, delta):
  """Compute epsilon for given log_moments and delta.

  Args:
    log_moments: the log moments of privacy loss, in the form of pairs
      of (moment_order, log_moment)
    delta: the target delta.
  Returns:
    epsilon
  """
  min_eps = float("inf")
  for moment_order, log_moment in log_moments:
    if moment_order == 0:
      continue
    if math.isinf(log_moment) or math.isnan(log_moment):
      sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
      continue
    min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
  return min_eps 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:gaussian_moments.py


注:本文中的numpy.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。