本文整理匯總了Python中numpy.load方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.load方法的具體用法?Python numpy.load怎麽用?Python numpy.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _deserialize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def _deserialize(self, data, type_):
if self.compress:
# decompress the data if needed
data = lz4.frame.decompress(data)
if type_ == _NUMPY:
# deserialize numpy arrays
buf = io.BytesIO(data)
data = np.load(buf)
elif type_ == _PICKLE:
# deserialize other python objects
data = pickle.loads(data)
else:
# Otherwise we just return data as it is (bytes)
pass
return data
示例2: setup
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def setup(self, bottom, top):
layer_params = yaml.load(self.param_str)
self._layer_params = layer_params
# default batch_size = 256
self._batch_size = int(layer_params.get('batch_size', 256))
self._resize = layer_params.get('resize', -1)
self._mean_file = layer_params.get('mean_file', None)
self._source_type = layer_params.get('source_type', 'CSV')
self._shuffle = layer_params.get('shuffle', False)
# read image_mean from file and preload all data into memory
# will read either file or array into self._mean
self.set_mean()
self.preload_db()
self._compressed = self._layer_params.get('compressed', True)
if not self._compressed:
self.decompress_data()
示例3: set_mean
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def set_mean(self):
if self._mean_file:
if type(self._mean_file) is str:
# read image mean from file
try:
# if it is a pickle file
self._mean = np.load(self._mean_file)
except (IOError):
blob = caffe_pb2.BlobProto()
blob_str = open(self._mean_file, 'rb').read()
blob.ParseFromString(blob_str)
self._mean = np.array(caffe.io.blobproto_to_array(blob))[0]
else:
self._mean = self._mean_file
self._mean = np.array(self._mean)
else:
self._mean = None
示例4: load_encodings
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def load_encodings():
"""
加載保存的曆史人臉向量,以及name向量,並返回
:return:
"""
known_face_encodings = np.load(KNOWN_FACE_ENCODINGS)
known_face_names = np.load(KNOWN_FACE_NANE)
if not os.path.exists(KNOWN_FACE_NANE) or not os.path.exists(KNOWN_FACE_ENCODINGS):
encoding_images(data_path)
aa = [file for file in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, file)) and file.endswith("npy")]
# ("known_face_encodings_") or file.startswith("known_face_name_"))
for data in aa:
if data.startswith('known_face_encodings_'):
tmp_face_encodings = np.load(os.path.join(data_path,data))
known_face_encodings = np.concatenate((known_face_encodings, tmp_face_encodings), axis=0)
print("load ", data)
elif data.startswith('known_face_name_'):
tmp_face_name = np.load(os.path.join(data_path, data))
known_face_names = np.concatenate((known_face_names, tmp_face_name), axis=0)
print("load ", data)
else:
print('skip to load original ', data)
return known_face_encodings,known_face_names
示例5: create_cifar100
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def create_cifar100(tfrecord_dir, cifar100_dir):
print('Loading CIFAR-100 from "%s"' % cifar100_dir)
import pickle
with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
data = pickle.load(file, encoding='latin1')
images = data['data'].reshape(-1, 3, 32, 32)
labels = np.array(data['fine_labels'])
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype == np.int32
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 99
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
order = tfr.choose_shuffled_order()
for idx in range(order.size):
tfr.add_image(images[order[idx]])
tfr.add_labels(onehot[order])
#----------------------------------------------------------------------------
示例6: deserialize_ndarray_npy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def deserialize_ndarray_npy(d):
"""
Deserializes a JSONified :obj:`numpy.ndarray` that was created using numpy's
:obj:`save` function.
Args:
d (:obj:`dict`): A dictionary representation of an :obj:`ndarray` object, created
using :obj:`numpy.save`.
Returns:
An :obj:`ndarray` object.
"""
with io.BytesIO() as f:
f.write(json.loads(d['npy']).encode('latin-1'))
f.seek(0)
return np.load(f)
示例7: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def __init__(self, data_path, data_split, vocab, cap_suffix='caps'):
self.vocab = vocab
loc = data_path + '/'
# Captions
self.captions = []
with open(loc+'%s_%s.txt' % (data_split, cap_suffix), 'rb') as f:
for line in f:
tmp = line.strip()
if type(tmp) == bytes:
tmp = bytes.decode(tmp)
self.captions.append(tmp)
# Image features
self.images = np.load(loc+'%s_ims.npy' % data_split)
self.length = len(self.captions)
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if self.images.shape[0] != self.length:
self.im_div = 5
else:
self.im_div = 1
# the development set for coco is large and so validation would be slow
if data_split == 'dev':
self.length = 5000
示例8: load_mnist
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def load_mnist(training_num=50000):
data_path = os.path.join(os.path.dirname(os.path.realpath('__file__')), 'mnist.npz')
if not os.path.isfile(data_path):
from six.moves import urllib
origin = (
'https://github.com/sxjscience/mxnet/raw/master/example/bayesian-methods/mnist.npz'
)
print('Downloading data from %s to %s' % (origin, data_path))
ctx = ssl._create_unverified_context()
with urllib.request.urlopen(origin, context=ctx) as u, open(data_path, 'wb') as f:
f.write(u.read())
print('Done!')
dat = numpy.load(data_path)
X = (dat['X'][:training_num] / 126.0).astype('float32')
Y = dat['Y'][:training_num]
X_test = (dat['X_test'] / 126.0).astype('float32')
Y_test = dat['Y_test']
Y = Y.reshape((Y.shape[0],))
Y_test = Y_test.reshape((Y_test.shape[0],))
return X, Y, X_test, Y_test
示例9: load_params
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def load_params(dir_path="", epoch=None, name=""):
prefix = os.path.join(dir_path, name)
_, param_loading_path, _ = get_saving_path(prefix, epoch)
while not os.path.isfile(param_loading_path):
logging.info("in load_param, %s Not Found!" % param_loading_path)
time.sleep(60)
save_dict = nd.load(param_loading_path)
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return arg_params, aux_params, param_loading_path
示例10: test_consistency
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def test_consistency(dump=False):
shape = (299, 299)
_get_model()
_get_data(shape)
if dump:
_dump_images(shape)
gt = None
else:
gt = {n: mx.nd.array(a) for n, a in np.load('data/inception-v3-dump.npz').items()}
data = np.load('data/test_images_%d_%d.npy'%shape)
sym, arg_params, aux_params = mx.model.load_checkpoint('model/Inception-7', 1)
arg_params['data'] = data
arg_params['softmax_label'] = np.random.randint(low=1, high=1000, size=(data.shape[0],))
ctx_list = [{'ctx': mx.gpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}},
{'ctx': mx.cpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}}]
gt = check_consistency(sym, ctx_list, arg_params=arg_params, aux_params=aux_params,
tol=1e-3, grad_req='null', raise_on_err=False, ground_truth=gt)
if dump:
np.savez('data/inception-v3-dump.npz', **{n: a.asnumpy() for n, a in gt.items()})
示例11: extract_mnist_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def extract_mnist_data(filename, num_images, image_size, pixel_depth):
"""
Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
# if not os.path.exists(file):
if not tf.gfile.Exists(filename+".npy"):
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(image_size * image_size * num_images)
data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32)
data = (data - (pixel_depth / 2.0)) / pixel_depth
data = data.reshape(num_images, image_size, image_size, 1)
np.save(filename, data)
return data
else:
with tf.gfile.Open(filename+".npy", mode='r') as file_obj:
return np.load(file_obj)
示例12: is_image_file
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def is_image_file(id, dataset, dtype, filename):
filename_lower = filename.lower()
if any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS):
if dtype == 'novel':
try:
default_loader(filename)
return True
except OSError:
print('{filename} failed to load'.format(filename=filename))
with open('taxonomy/{dataset}/corrupted_{dtype}_{id:d}.txt' \
.format(dataset=dataset, dtype=dtype, id=id), 'a') as f:
f.write(filename + '\n')
return False
else:
return True
else:
return False
示例13: generate_train_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def generate_train_batch(self):
batch_data, batch_segs, batch_pids, batch_targets = [], [], [], []
class_targets_list = [v['class_target'] for (k, v) in self._data.items()]
#samples patients towards equilibrium of foreground classes on a roi-level (after randomly sampling the ratio "batch_sample_slack).
batch_ixs = dutils.get_class_balanced_patients(
class_targets_list, self.batch_size, self.cf.head_classes - 1, slack_factor=self.cf.batch_sample_slack)
patients = list(self._data.items())
for b in batch_ixs:
patient = patients[b][1]
all_data = np.load(patient['data'], mmap_mode='r')
data = all_data[0]
seg = all_data[1].astype('uint8')
batch_pids.append(patient['pid'])
batch_targets.append(patient['class_target'])
batch_data.append(data[np.newaxis])
batch_segs.append(seg[np.newaxis])
data = np.array(batch_data)
seg = np.array(batch_segs).astype(np.uint8)
class_target = np.array(batch_targets)
return {'data': data, 'seg': seg, 'pid': batch_pids, 'class_target': class_target}
示例14: compute_mfcc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def compute_mfcc(audio, **kwargs):
"""
Compute the MFCC for a given audio waveform. This is
identical to how DeepSpeech does it, but does it all in
TensorFlow so that we can differentiate through it.
"""
batch_size, size = audio.get_shape().as_list()
audio = tf.cast(audio, tf.float32)
# 1. Pre-emphasizer, a high-pass filter
audio = tf.concat((audio[:, :1], audio[:, 1:] - 0.97*audio[:, :-1], np.zeros((batch_size,1000),dtype=np.float32)), 1)
# 2. windowing into frames of 320 samples, overlapping
windowed = tf.stack([audio[:, i:i+400] for i in range(0,size-320,160)],1)
# 3. Take the FFT to convert to frequency space
ffted = tf.spectral.rfft(windowed, [512])
ffted = 1.0 / 512 * tf.square(tf.abs(ffted))
# 4. Compute the Mel windowing of the FFT
energy = tf.reduce_sum(ffted,axis=2)+1e-30
filters = np.load("filterbanks.npy").T
feat = tf.matmul(ffted, np.array([filters]*batch_size,dtype=np.float32))+1e-30
# 5. Take the DCT again, because why not
feat = tf.log(feat)
feat = tf.spectral.dct(feat, type=2, norm='ortho')[:,:,:26]
# 6. Amplify high frequencies for some reason
_,nframes,ncoeff = feat.get_shape().as_list()
n = np.arange(ncoeff)
lift = 1 + (22/2.)*np.sin(np.pi*n/22)
feat = lift*feat
width = feat.get_shape().as_list()[1]
# 7. And now stick the energy next to the features
feat = tf.concat((tf.reshape(tf.log(energy),(-1,width,1)), feat[:, :, 1:]), axis=2)
return feat
示例15: read
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import load [as 別名]
def read(self, file, path):
"""Read the content index from file.
"""
pos, = struct.unpack('<Q', file.read(8))
if pos == 0:
raise VergeMLError("Invalid cache file: {}".format(path))
file.seek(pos)
self.index, self.meta, self.info = pickle.load(file)