當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.linspace方法代碼示例

本文整理匯總了Python中numpy.linspace方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.linspace方法的具體用法?Python numpy.linspace怎麽用?Python numpy.linspace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.linspace方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _radial_wvnum

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def _radial_wvnum(k, l, N, nfactor):
    """ Creates a radial wavenumber based on two horizontal wavenumbers
    along with the appropriate index map
    """

    # compute target wavenumbers
    k = k.values
    l = l.values
    K = np.sqrt(k[np.newaxis,:]**2 + l[:,np.newaxis]**2)
    nbins = int(N/nfactor)
    if k.max() > l.max():
        ki = np.linspace(0., l.max(), nbins)
    else:
        ki = np.linspace(0., k.max(), nbins)

    # compute bin index
    kidx = np.digitize(np.ravel(K), ki)
    # compute number of points for each wavenumber
    area = np.bincount(kidx)
    # compute the average radial wavenumber for each bin
    kr = (np.bincount(kidx, weights=K.ravel())
          / np.ma.masked_where(area==0, area))

    return ki, kr[1:-1] 
開發者ID:xgcm,項目名稱:xrft,代碼行數:26,代碼來源:xrft.py

示例2: test_cross_phase_2d

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_cross_phase_2d(self, dask):
        Ny, Nx = (32, 16)
        x = np.linspace(0, 1, num=Nx, endpoint=False)
        y = np.ones(Ny)
        f = 6
        phase_offset = np.pi/2
        signal1 = np.cos(2*np.pi*f*x)  # frequency = 1/(2*pi)
        signal2 = np.cos(2*np.pi*f*x - phase_offset)
        da1 = xr.DataArray(data=signal1*y[:,np.newaxis], name='a',
                          dims=['y','x'], coords={'y':y, 'x':x})
        da2 = xr.DataArray(data=signal2*y[:,np.newaxis], name='b',
                          dims=['y','x'], coords={'y':y, 'x':x})
        with pytest.raises(ValueError):
            xrft.cross_phase(da1, da2, dim=['y','x'])

        if dask:
            da1 = da1.chunk({'x': 16})
            da2 = da2.chunk({'x': 16})
        cp = xrft.cross_phase(da1, da2, dim=['x'])
        actual_phase_offset = cp.sel(freq_x=f).values
        npt.assert_almost_equal(actual_phase_offset, phase_offset) 
開發者ID:xgcm,項目名稱:xrft,代碼行數:23,代碼來源:test_xrft.py

示例3: compute_mode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def compute_mode(self):
        """
        Pre-compute mode vectors from candidate locations (in spherical 
        coordinates).
        """
        if self.num_loc is None:
            raise ValueError('Lookup table appears to be empty. \
                Run build_lookup().')
        self.mode_vec = np.zeros((self.max_bin,self.M,self.num_loc), 
            dtype='complex64')
        if (self.nfft % 2 == 1):
            raise ValueError('Signal length must be even.')
        f = 1.0 / self.nfft * np.linspace(0, self.nfft / 2, self.max_bin) \
            * 1j * 2 * np.pi
        for i in range(self.num_loc):
            p_s = self.loc[:, i]
            for m in range(self.M):
                p_m = self.L[:, m]
                if (self.mode == 'near'):
                    dist = np.linalg.norm(p_m - p_s, axis=1)
                if (self.mode == 'far'):
                    dist = np.dot(p_s, p_m)
                # tau = np.round(self.fs*dist/self.c) # discrete - jagged
                tau = self.fs * dist / self.c  # "continuous" - smoother
                self.mode_vec[:, m, i] = np.exp(f * tau) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:doa.py

示例4: load_RSM

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def load_RSM(filename):
    om, tt, psd = xu.io.getxrdml_map(filename)
    om = np.deg2rad(om)
    tt = np.deg2rad(tt)
    wavelength = 1.54056

    q_y = (1 / wavelength) * (np.cos(tt) - np.cos(2 * om - tt))
    q_x = (1 / wavelength) * (np.sin(tt) - np.sin(2 * om - tt))

    xi = np.linspace(np.min(q_x), np.max(q_x), 100)
    yi = np.linspace(np.min(q_y), np.max(q_y), 100)
    psd[psd < 1] = 1
    data_grid = griddata(
        (q_x, q_y), psd, (xi[None, :], yi[:, None]), fill_value=1, method="cubic"
    )
    nx, ny = data_grid.shape

    range_values = [np.min(q_x), np.max(q_x), np.min(q_y), np.max(q_y)]
    output_data = (
        Panel(np.log(data_grid).reshape(nx, ny, 1), minor_axis=["RSM"])
        .transpose(2, 0, 1)
        .to_frame()
    )

    return range_values, output_data 
開發者ID:materialsproject,項目名稱:MPContribs,代碼行數:27,代碼來源:pre_submission.py

示例5: atest_plot_samples

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def atest_plot_samples(self):
        dm = np.linspace(4., 19., 1001)
        samples = []

        for dm_k in dm:
            d = 10.**(dm_k/5.-2.)
            samples.append(self._interp_ebv(self._test_data[0], d))

        samples = np.array(samples).T
        # print samples

        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        for s in samples:
            ax.plot(dm, s, lw=2., alpha=0.5)

        plt.show() 
開發者ID:gregreen,項目名稱:dustmaps,代碼行數:20,代碼來源:test_bayestar.py

示例6: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def __init__(self,alpha_max,Tg,xi):
        gamma=0.9+(0.05-xi)/(0.3+6*xi)
        eta1=0.02+(0.05-xi)/(4+32*xi)
        eta1=eta1 if eta1>0 else 0
        eta2=1+(0.05-xi)/(0.08+1.6*xi)
        eta2=eta2 if eta2>0.55 else 0.55
        T=np.linspace(0,6,601)
        alpha=[]
        for t in T:
            if t<0.1:
                alpha.append(np.interp(t,[0,0.1],[0.45*alpha_max,eta2*alpha_max]))
            elif t<Tg:
                alpha.append(eta2*alpha_max)
            elif t<5*Tg:
                alpha.append((Tg/t)**gamma*eta2*alpha_max)
            else:
                alpha.append((eta2*0.2**gamma-eta1*(t-5*Tg))*alpha_max)
        self.__spectrum={'T':T,'alpha':alpha} 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:20,代碼來源:spectrum.py

示例7: curve_length

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def curve_length(self, start=None, end=None, precision=0.01):
        '''
        Calculates the length of the curve by dividing the curve up
        into pieces of parameterized-length <precision>.
        '''
        if start is None: start = self.t[0]
        if end is None: end = self.t[-1]
        from scipy import interpolate
        if self.order == 1:
            # we just want to add up along the steps...
            ii = [ii for (ii,t) in enumerate(self.t) if start < t and t < end]
            ts = np.concatenate([[start], self.t[ii], [end]])
            xy = np.vstack([[self(start)], self.coordinates[:,ii].T, [self(end)]])
            return np.sum(np.sqrt(np.sum((xy[1:] - xy[:-1])**2, axis=1)))
        else:
            t = np.linspace(start, end, int(np.ceil((end-start)/precision)))
            dt = t[1] - t[0]
            dx = interpolate.splev(t, self.splrep[0], der=1)
            dy = interpolate.splev(t, self.splrep[1], der=1)
            return np.sum(np.sqrt(dx**2 + dy**2)) * dt 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:22,代碼來源:core.py

示例8: test_2x3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_2x3(self):
        # Loading the water depth map
        dat = loadtxt('data/WaterDepth1.dat')
        X, Y = meshgrid(linspace(0., 1000., 50), linspace(0., 1000., 50))
        depth = array(zip(X.flatten(), Y.flatten(), dat.flatten()))
        borders = array([[200, 200], [150, 500], [200, 800], [600, 900], [700, 700], [900, 500], [800, 200], [500, 100], [200, 200]])
        baseline = array([[587.5, 223.07692308], [525., 346.15384615], [837.5, 530.76923077], [525., 530.76923077], [525., 838.46153846], [837.5, 469.23076923]])

        wt_desc = WTDescFromWTG('data/V80-2MW-offshore.wtg').wt_desc
        wt_layout = GenericWindFarmTurbineLayout([WTPC(wt_desc=wt_desc, position=pos) for pos in baseline])

        t = Topfarm(
            baseline_layout = wt_layout,
            borders = borders,
            depth_map = depth,
            dist_WT_D = 5.0,
            distribution='spiral',
            wind_speeds=[4., 8., 20.],
            wind_directions=linspace(0., 360., 36)[:-1]
        )

        t.run()

        self.fail('make save function')
        t.save() 
開發者ID:DTUWindEnergy,項目名稱:TOPFARM,代碼行數:27,代碼來源:test_topfarm.py

示例9: figures

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def figures(ext, show):

    for name, df in TablesRecorder.generate_dataframes('thames_output.h5'):
        df.columns = ['Very low', 'Low', 'Central', 'High', 'Very high']

        fig, (ax1, ax2) = plt.subplots(figsize=(12, 4), ncols=2, sharey='row',
                                       gridspec_kw={'width_ratios': [3, 1]})
        df['2100':'2125'].plot(ax=ax1)
        df.quantile(np.linspace(0, 1)).plot(ax=ax2)

        if name.startswith('reservoir'):
            ax1.set_ylabel('Volume [$Mm^3$]')
        else:
            ax1.set_ylabel('Flow [$Mm^3/day$]')

        for ax in (ax1, ax2):
            ax.set_title(name)
            ax.grid(True)
        plt.tight_layout()

        if ext is not None:
            fig.savefig(f'{name}.{ext}', dpi=300)

    if show:
        plt.show() 
開發者ID:pywr,項目名稱:pywr,代碼行數:27,代碼來源:thames.py

示例10: plot_percentiles

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def plot_percentiles(A, B, ax=None):
    if ax is None:
        ax = plt.gca()
    percentiles = np.linspace(0.001, 0.999, 1000) * 100
    A_pct = scipy.stats.scoreatpercentile(A.values, percentiles)
    B_pct = scipy.stats.scoreatpercentile(B.values, percentiles)
    percentiles = percentiles / 100.0
    ax.plot(percentiles, B_pct[::-1], color=c["Bfill"], clip_on=False, linewidth=2)
    ax.plot(percentiles, A_pct[::-1], color=c["Afill"], clip_on=False, linewidth=2)
    ax.set_xlabel("Cumulative frequency")
    ax.grid(True)
    ax.xaxis.grid(True, which="both")
    set_000formatter(ax.get_yaxis())
    ax.set_xscale("logit")
    xticks = ax.get_xticks()
    xticks_minr = ax.get_xticks(minor=True)
    ax.set_xticklabels([], minor=True)
    ax.set_xticks([0.01, 0.1, 0.5, 0.9, 0.99])
    ax.set_xticklabels(["1", "10", "50", "90", "99"])
    ax.set_xlim(0.001, 0.999)
    ax.legend([B.name, A.name], loc="best")
    return ax 
開發者ID:pywr,項目名稱:pywr,代碼行數:24,代碼來源:figures.py

示例11: generate_anchors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def generate_anchors(self, image_width: int, image_height: int, num_x_anchors: int, num_y_anchors: int) -> Tensor:
        center_ys = np.linspace(start=0, stop=image_height, num=num_y_anchors + 2)[1:-1]
        center_xs = np.linspace(start=0, stop=image_width, num=num_x_anchors + 2)[1:-1]
        ratios = np.array(self._anchor_ratios)
        ratios = ratios[:, 0] / ratios[:, 1]
        sizes = np.array(self._anchor_sizes)

        # NOTE: it's important to let `center_ys` be the major index (i.e., move horizontally and then vertically) for consistency with 2D convolution
        # giving the string 'ij' returns a meshgrid with matrix indexing, i.e., with shape (#center_ys, #center_xs, #ratios)
        center_ys, center_xs, ratios, sizes = np.meshgrid(center_ys, center_xs, ratios, sizes, indexing='ij')

        center_ys = center_ys.reshape(-1)
        center_xs = center_xs.reshape(-1)
        ratios = ratios.reshape(-1)
        sizes = sizes.reshape(-1)

        widths = sizes * np.sqrt(1 / ratios)
        heights = sizes * np.sqrt(ratios)

        center_based_anchor_bboxes = np.stack((center_xs, center_ys, widths, heights), axis=1)
        center_based_anchor_bboxes = torch.from_numpy(center_based_anchor_bboxes).float()
        anchor_bboxes = BBox.from_center_base(center_based_anchor_bboxes)

        return anchor_bboxes 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:26,代碼來源:region_proposal_network.py

示例12: test_dist_albedo

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_dist_albedo(self):
        """
        Test that albedos outside of the range have zero probability

        """

        spec = copy.deepcopy(self.spec)
        spec['modules']['PlanetPhysicalModel'] = 'FortneyMarleyCahoyMix1'
        with RedirectStreams(stdout=self.dev_null):
            pp = DulzPlavchan(**spec)

        p = np.linspace(pp.prange[0]-1,pp.prange[1]+1,100)

        fp = pp.dist_albedo(p)
        self.assertTrue(np.all(fp[p < pp.prange[0]] == 0),'dist_albedo high bound failed for DulzPlavchan')
        self.assertTrue(np.all(fp[p > pp.prange[1]] == 0),'dist_albedo low bound failed for DulzPlavchan')
        self.assertTrue(np.all(fp[(p >= pp.prange[0]) & (p <= pp.prange[1])] > 0),'dist_albedo generates zero probabilities within range for DulzPlavchan') 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:19,代碼來源:test_DulzPlavchan.py

示例13: test_dist_eccen

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_dist_eccen(self):
        """
        Test that eccentricities outside of the range have zero probability

        """
        for mod in self.allmods:
            if 'dist_eccen' in mod.__dict__:
                with RedirectStreams(stdout=self.dev_null):
                    pp = mod(**self.spec)

                e = np.linspace(pp.erange[0]-1,pp.erange[1]+1,100)

                fe = pp.dist_eccen(e)
                self.assertTrue(np.all(fe[e < pp.erange[0]] == 0),'dist_eccen high bound failed for %s'%mod.__name__)
                self.assertTrue(np.all(fe[e > pp.erange[1]] == 0),'dist_eccen low bound failed for %s'%mod.__name__)
                self.assertTrue(np.all(fe[(e >= pp.erange[0]) & (e <= pp.erange[1])] > 0),'dist_eccen generates zero probabilities within range for %s'%mod.__name__) 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:18,代碼來源:test_PlanetPopulation.py

示例14: test_dist_albedo

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_dist_albedo(self):
        """
        Test that albedos outside of the range have zero probability

        """

        exclude_mods = ['KeplerLike1',  'AlbedoByRadiusDulzPlavchan',  'DulzPlavchan']
        for mod in self.allmods:
            if (mod.__name__ not in exclude_mods) and ('dist_albedo' in mod.__dict__):
                with RedirectStreams(stdout=self.dev_null):
                    pp = mod(**self.spec)

                p = np.linspace(pp.prange[0]-1,pp.prange[1]+1,100)

                fp = pp.dist_albedo(p)
                self.assertTrue(np.all(fp[p < pp.prange[0]] == 0),'dist_albedo high bound failed for %s'%mod.__name__)
                self.assertTrue(np.all(fp[p > pp.prange[1]] == 0),'dist_albedo low bound failed for %s'%mod.__name__)
                self.assertTrue(np.all(fp[(p >= pp.prange[0]) & (p <= pp.prange[1])] > 0),'dist_albedo generates zero probabilities within range for %s'%mod.__name__) 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:20,代碼來源:test_PlanetPopulation.py

示例15: test_ppFact_fits

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import linspace [as 別名]
def test_ppFact_fits(self):
        # get fits file path for ppFact test
        classpath = os.path.split(inspect.getfile(self.__class__))[0]
        ppFactPath = os.path.join(classpath,'test_PostProcessing_ppFact.fits')

        # fits file has values for WA in [0.1,0.2]
        testWA = np.linspace(0.1,0.2,100)*u.arcsec

        for mod in self.allmods:
            with RedirectStreams(stdout=self.dev_null):
                obj = mod(ppFact=ppFactPath,**self.specs)

            vals = obj.ppFact(testWA)

            self.assertTrue(np.all(vals > 0),'negative value of ppFact for %s'%mod.__name__)
            self.assertTrue(np.all(vals <= 1),'ppFact > 1 for %s'%mod.__name__) 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:18,代碼來源:test_PostProcessing.py


注:本文中的numpy.linspace方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。